Impacto de la morfología del vecindario en el clima tropical: un estudio de caso de los barrios tradicionales de Kanyakumari, India

Autores/as

DOI:

https://doi.org/10.22320/07190700.2025.15.01.02

Palabras clave:

morfología, zona residencial, clima, zonas tropicales

Resumen

La morfología del entorno construido interactúa con el ambiente térmico circundante. Las interacciones térmicas afectan la demanda energética y el confort térmico de un vecindario. Las temperaturas extremas debido al cambio climático exigen una intervención para reciprocar la calefacción urbana. Por lo tanto, este estudio analizó la interacción térmica entre la morfología y el ambiente térmico. El estudio se llevó a cabo en la ciudad tropical de Kanyakumari, en la India. Se estudió la influencia de la relación de aspecto, el factor de vista del cielo, la relación de cubierta verde y la relación de cubierta edificada en el Índice Climático Térmico Universal. Se realizó un análisis cuantitativo de las variables morfológicas para establecer una relación con la variable de confort. Las relaciones de aspecto y cubierta verde se correlacionaron positivamente con el índice climático; por el contrario, el factor de vista del cielo y la relación de cubierta edificada tuvieron una relación negativa con el índice. Sin embargo, cuando se introdujo vegetación en las calles, la interacción entre la relación de aspecto y el índice se invirtió. Un aumento en la relación de aspecto redujo el confort en el cañón al introducir vegetación.

Descargas

Biografía del autor/a

Monika Shankar, Instituto Nacional de Tecnología, Tiruchirappalli, India

Máster en Arquitectura Sostenible
Departamento de Arquitectura, Becario de Investigación

A. Meenatchi Sundaram, Instituto Nacional de Tecnología, Tiruchirappalli, India

Doctor of Philosophy in Architecture and Planning
Professor, Department of Architecture

Citas

BETTI, G., TARTARINI, F., NGUYEN, C., & SCHIAVON, S. (2024). CBE Clima Tool: a free and open-source web application for climate analysis tailored to sustainable building design. Building Simulation, 17(3), 493-5008. https://doi.org/10.1007/s12273-023-1090-5 DOI: https://doi.org/10.1007/s12273-023-1090-5

BOUKHABLA, M., ALKAMA, D., & BOUCHAIR, A. (2013). The effect of urban morphology on urban heat island in the city of Biskra in Algeria. International Journal of Ambient Energy, 34(2), 100–110. https://doi.org/10.1080/01430750.2012.740424 DOI: https://doi.org/10.1080/01430750.2012.740424

Bureau of Energy Efficiency. (2023). Impact of Energy Efficiency Measures For The Year 2021-22. https://udit.beeindia.gov.in/wp-content/uploads/2024/02/Impact-Assessment-Report-2021-22-1.pdf

CHEN, G., WANG, D., WANG, Q., LI, Y., WANG, X., HANG, J., GAO, P., OU, C., & WANG, K. (2020). Scaled outdoor experimental studies of urban thermal environment in street canyon models with various aspect ratios and thermal storage. Science of the Total Environment, 726, 138147. https://doi.org/10.1016/j.scitotenv.2020.138147 DOI: https://doi.org/10.1016/j.scitotenv.2020.138147

CHEN, S., ZHANG, W., HIEN, N., & IGNATIUS, M. (2020). Combining CityGML files and data-driven models for microclimate simulations in a tropical city. Building and Environment, 185, 107314. https://doi.org/10.1016/j.buildenv.2020.107314 DOI: https://doi.org/10.1016/j.buildenv.2020.107314

DE, B., & MUKHERJEE, M. (2018). "Optimisation of canyon orientation and aspect ratio in warm-humid climate: Case of Rajarhat Newtown, India". Urban Climate, 24, 887–920. https://doi.org/10.1016/j.uclim.2017.11.003 DOI: https://doi.org/10.1016/j.uclim.2017.11.003

EMMANUEL, R., & FERNANDO, H. J. S. (2007). Urban heat islands in humid and arid climates: Role of urban form and thermal properties in Colombo, Sri Lanka, and Phoenix, USA. Climate Research, 34, 241–251. https://doi.org/10.3354/cr00694 DOI: https://doi.org/10.3354/cr00694

EMMANUEL, R., & JOHANSSON, E. (2006). Influence of urban morphology and sea breeze on hot humid microclimate: The case of Colombo, Sri Lanka. Climate Research, 30, 189–200. https://doi.org/10.3354/cr030189 DOI: https://doi.org/10.3354/cr030189

GOLANY, G. S. (1996). Urban design morphology and thermal performance. Atmospheric Environment, 30(3), 455–465. https://doi.org/10.1016/1352-2310(95)00266-9 DOI: https://doi.org/10.1016/1352-2310(95)00266-9

JAMEI, E., OSSEN, D. R., SEYEDMAHMOUDIAN, M., SANDANAYAKE, M., STOJCEVSKI, A., & HORAN, B. (2020). Urban design parameters for heat mitigation in tropics. Renewable and Sustainable Energy Reviews, 134, 110362. https://doi.org/10.1016/j.rser.2020.110362 DOI: https://doi.org/10.1016/j.rser.2020.110362

JASP Team. (2024). JASP (Version 0.19.2) [Computer software]. https://jasp-stats.org/

JOHANSSON, E., EMMANUEL, R., & ROSENLUND, H. (September 19–22 2004). Microclimate and thermal comfort in the warm humid city of Colombo, Sri Lanka. Plea2004 - The 21th Conference on Passive and Low Energy Architecture. Eindhoven, The Netherlands. https://alexandria.tue.nl/openaccess/635611/p0661final.pdf

JUSUF, S. K., & HIEN, W. N. (2012). Development of empirical models for an estate-level air temperature prediction in Singapore. Journal of Heat Island Institute International, 7-2, 111-125. https://heat-island.jp/web_journal/HI2009Conf/pdf/15.pdf

KRÜGER, E., & GIVONI, B. (2007). Outdoor measurements and temperature comparisons of seven monitoring stations: Preliminary studies in Curitiba, Brazil. Building and Environment, 42(4), 1685–1698. https://doi.org/10.1016/j.buildenv.2006.02.019 DOI: https://doi.org/10.1016/j.buildenv.2006.02.019

LASSANDRO, P., DI TURI, S., & ZACCARO, S. A. (2019). Mitigation of rising urban temperatures starting from historic and modern street canyons towards zero energy settlement. IOP Conference Series: Materials Science and Engineering, 609(7), 072036. https://doi.org/10.1088/1757-899X/609/7/072036 DOI: https://doi.org/10.1088/1757-899X/609/7/072036

NBC. (2016). National Building Code of india 2016 Volumen 2. Bureau of Indian Standards. https://dn790000.ca.archive.org/0/items/nationalbuilding02/in.gov.nbc.2016.vol2.digital.pdf

OKE, T. R. (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108(455), 1–24. https://doi.org/10.1002/qj.49710845502 DOI: https://doi.org/10.1002/qj.49710845502

OKE, T. R., JOHNSON, G. T., STEYN, D. G., & WATSON, I. D. (1991). Simulation of surface urban heat islands under “ideal” conditions at night, part 2: Diagnosis of causation. Boundary-Layer Meteorology, 56, 339–358. https://doi.org/10.1007/BF00119211 DOI: https://doi.org/10.1007/BF00119211

OUYANG, W., LIU, Z., LAU, K., SHI, Y., & NG, E. (2022). Comparing different recalibrated methods for estimating mean radiant temperature in outdoor environment. Building and Environment, 216, 109004. https://doi.org/10.1016/j.buildenv.2022.109004 DOI: https://doi.org/10.1016/j.buildenv.2022.109004

PATTACINI, L. (2012). Climate and urban form. Urban Design International, 17, 106–114. https://doi.org/10.1057/udi.2012.2 DOI: https://doi.org/10.1057/udi.2012.2

SHAFAGHAT, A., MANTEGHI, G., KEYVANFAR, A., BIN LAMIT, H., SAITO, K., & OSSEN, D. R. (2016). Street geometry factors influence urban microclimate in tropical coastal cities: A review. Environmental and Climate Technologies, 17(1), 61–75. https://doi.org/10.1515/rtuect-2016-0006 DOI: https://doi.org/10.1515/rtuect-2016-0006

SHANKAR, M., & MARWAHA, B. M. (2023). Impact of courtyard on indoor thermal environment in vernacular row houses of warm and humid climate: case study of Kanyakumari, Tamil Nadu. Advances in Building Energy Research, 17(6), 653–678. https://doi.org/10.1080/17512549.2023.2290529 DOI: https://doi.org/10.1080/17512549.2023.2290529

SHANKAR, M., & SUNDARAM, A. M. (2023). Efficient and optimum design of native architecture – A means for sustainability. Case study of Residential Units in Kottar, Kanyakumari. Energy & Buildings, 298, 113586. https://doi.org/10.1016/j.enbuild.2023.113586 DOI: https://doi.org/10.1016/j.enbuild.2023.113586

SHARMIN, T., STEEMERS, K., & HUMPHREYS, M. (2019). Outdoor thermal comfort and summer PET range: A field study in tropical city Dhaka. Energy and Buildings, 198, 149–159. https://doi.org/10.1016/j.enbuild.2019.05.064 DOI: https://doi.org/10.1016/j.enbuild.2019.05.064

SUN, C. Y. (2011). A street thermal environment study in summer by the mobile transect technique. Theoretical and Applied Climatology, 106, 433–442. https://doi.org/10.1007/s00704-011-0444-6 DOI: https://doi.org/10.1007/s00704-011-0444-6

TSOKA, S., TSIKALOUDAKI, K., & THEODOSIOU, T. (2017). Urban space’s morphology and microclimatic analysis: A study for a typical urban district in the Mediterranean city of Thessaloniki, Greece. Energy and Buildings, 156, 96–108. https://doi.org/10.1016/j.enbuild.2017.09.066 DOI: https://doi.org/10.1016/j.enbuild.2017.09.066

TSOKA, S., TSIKALOUDAKI, K., THEODOSIOU, T., & BIKAS, D. (2020). Assessing the effect of the urban morphology on the ambient air temperature of urban street canyons under different meteorological conditions. Application in residential areas of Thessaloniki, Greece. IOP Conference Series: Earth and Environmental Science, 410, 012005. https://doi.org/10.1088/1755-1315/410/1/012005 DOI: https://doi.org/10.1088/1755-1315/410/1/012005

VANOS, J. K., RYKACZEWSKI, K., MIDDEL, A., VECELLIO, D. J., BROWN, R. D., & GILLESPIE, T. J. (2021). Improved methods for estimating mean radiant temperature in hot and sunny outdoor settings. International Journal of Biometeorology, 65, 967–983. https://doi.org/10.1007/s00484-021-02131-y DOI: https://doi.org/10.1007/s00484-021-02131-y

YU, Z., CHEN, S., WONG, N. H., IGNATIUS, M., DENG, J., HE, Y., & HII, D. J. C. (2020). Dependence between urban morphology and outdoor air temperature: A tropical campus study using random forests algorithm. Sustainable Cities and Society, 61, 102200. https://doi.org/10.1016/j.scs.2020.102200 DOI: https://doi.org/10.1016/j.scs.2020.102200

ZHOU, H., TAO, G., YAN, X., & SUN, J. (2021). Influences of greening and structures on urban thermal environments: A case study in Xuzhou City, China. Urban Forestry and Urban Greening, 66, 127386. https://doi.org/10.1016/j.ufug.2021.127386 DOI: https://doi.org/10.1016/j.ufug.2021.127386

ZHU, S., CHEN, M., LU, S., & MAI, X. (2022). Influence of Urban Geometry on Thermal Environment of Urban Street Canyons in Hong Kong. Buildings, 12(11), 1836. https://doi.org/10.3390/buildings12111836 DOI: https://doi.org/10.3390/buildings12111836

Publicado

2025-06-30

Cómo citar

Shankar, M., & Sundaram, A. M. (2025). Impacto de la morfología del vecindario en el clima tropical: un estudio de caso de los barrios tradicionales de Kanyakumari, India. Hábitat Sustentable, 15(1), 20–31. https://doi.org/10.22320/07190700.2025.15.01.02

Número

Sección

Artículos