Fachadas vidriadas: cálculo de transmitancia térmica

Autores

  • Maureen de Gastines Instituto de Ambiente, Hábitat y Energía (INAHE) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Mendoza, Argentina https://orcid.org/0000-0002-0357-9375
  • Andrea Pattini Instituto de Ambiente, Hábitat y Energía (INAHE) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina https://orcid.org/0000-0001-6305-1268

DOI:

https://doi.org/10.22320/07190700.2021.11.01.01

Palavras-chave:

fachadas, piel de vidrio, índices, sistemas constructivos

Resumo

La piel de vidrio es uno de los elementos dominantes de la arquitectura moderna y contemporánea. Este diseño de envolvente puede influir significativamente en la demanda de energía operativa de los edificios. En este trabajo, se analizan los sistemas de fachada de piel de vidrio disponibles en Argentina, con el objetivo de determinar los rangos de transmitancia térmica asociados, en función del diseño de perfiles, del tipo de vidriado y de las dimensiones de los paños vidriados. Inicialmente, se estudia mediante cálculo numérico bidimensional el impacto de varios parámetros de diseño de los perfiles sobre la transmitancia térmica, destacando la relevancia del modo de fijación del vidriado, para luego calcular la transmitancia térmica de las fachadas completas. Los resultados indican que el valor de transmitancia térmica de las fachadas de piel de vidrio depende principalmente de la transmitancia del vidriado empleado, y supera la misma en un 24%, en promedio.

Downloads

Não há dados estatísticos.

Biografias Autor

Maureen de Gastines, Instituto de Ambiente, Hábitat y Energía (INAHE) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Mendoza, Argentina

Doctora en Ingeniería mención Civil-Ambiental.

Estudiante posdoctoral

Andrea Pattini, Instituto de Ambiente, Hábitat y Energía (INAHE) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina

Doctora Orientación en Luz y Visión.
Investigadora principal y directora del INAHE

Referências

ASTE, N., BUZZETTI, M., DEL PERO, C., LEONFORTE, F. (2018). Glazing’s techno-economic performance: A comparison of window features in office buildings in different climates. Energy Build. 159, 123–135. DOI: https://doi.org/10.1016/j.enbuild.2017.10.088

ARNESANO, M., PANDARESE, G., MARTARELLI, M., NASPI, F., GURUNATHA, K. L., SOL, C., ... Y REVEL, G. M. (2021). Optimization of the thermochromic glazing design for curtain wall buildings based on experimental measurements and dynamic simulation. Solar Energy, 216, 14-25. DOI: https://doi.org/10.1016/j.solener.2021.01.013

BAE, M. J., OH, J. H. Y KIM, S. S. (2015). The effects of the frame ratio and glass on the thermal performance of a curtain wall system. Energy Procedia, 78, 2488-2493. DOI: https://doi.org/10.1016/j.egypro.2015.11.234

BRONWYN, B. (2018). Energy and Design Criticism: Is It Time for a New Measure of Beauty? Architectural Design, 88(1), 116-121. DOI: https://doi.org/10.1002/ad.2266

CAO, X., DAI, X. Y LIU, J. (2016). Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade. Energy and buildings, 128, 198-213. DOI: https://doi.org/10.1016/j.enbuild.2016.06.089

CARBARY, L. D. Y KIMBERLAIN, J. H. (2020). Structural silicone glazing: optimizing future designs based on historical performances. Intelligent Buildings International, 12(3), 169-179. DOI: https://doi.org/10.1080/17508975.2018.1544881

CORDERO, B. (2020). Thermal performance of novel frame-integrated unitised curtain wall. Journal of Construction, 14(1), 23-31. Recuperado de https://scielo.conicyt.cl/scielo.php?script=sci_abstract&pid=S0718-915X2018000100112&lng=es&nrm=iso

D'AMANZO, M., MERCADO, M. V. Y KARLEN, C. G. (2020). 10 preguntas de los edificios energía cero: revisión del estado del arte. Hábitat Sustentable, 10(2), 24-41. DOI: https://doi.org/10.22320/07190700.2020.10.02.02

DE GASTINES, M. Y PATTINI, A. (2019a). Modelización de un sistema de fachada integral en herramienta de simulación energética de edificios. En Villalba, A. y Alchapar, N. (Eds.), VI Congreso Latinoamericano de Simulación de Edificios -

IBPSA LATAM 2019 (pp. 330–339). Recuperado de http://ibpsa.com.ar/wp-content/uploads/2019/12/actas-IBPSA-LATAM-2019.pdf

DE GASTINES, M. Y PATTINI, A.E. (2019b). Propiedades energéticas de tecnologías de ventanas en Argentina. Hábitat Sustentable, 9(1), 46–57. DOI: https://doi.org/10.22320/07190700.2019.09.01.04

DE GASTINES, M. Y PATTINI, A.E. (2020). Window energy efficiency in Argentina - Determining factors and energy savings strategies. Journal of Cleaner Production, 247. DOI: https://doi.org/10.1016/j.jclepro.2019.119104

HAMIDA, H. Y ALSHIBANI, A. (2020). A multi-criteria decision-making model for selecting curtain wall systems in office buildings. Journal of Engineering, Design and Technology. DOI: https://doi.org/10.1108/JEDT-04-2020-0154

HUANG, B., CHEN, S., LU, W. Y MOSALAM, K. M. (2017). Seismic demand and experimental evaluation of the nonstructural building curtain wall: A review. Soil Dynamics and Earthquake Engineering, 100, 16-33. DOI: https://doi.org/10.1016/j.soildyn.2017.05.025

INSTITUTO ARGENTINO DE NORMALIZACIÓN Y CERTIFICACIÓN, 2002. IRAM 11601. Aislamiento térmico de edificios. Método de cálculo--Propiedades térmicas de los componentes y elementos de construcción en régimen estacionario.

LAM, T. C., GE, H. Y FAZIO, P. (2016). Energy positive curtain wall configurations for a cold climate using the Analysis of Variance (ANOVA) approach. Building simulation, 9(3), 297-310. DOI: https://doi.org/10.1007/s12273-016-0275-6

MOCERINO, C. (2020). High Performance and Intelligence of Glass Technologies in Architecture. Journal of Civil Engineering and Architecture, 14(4). DOI: https://doi.org/10.17265/1934-7359/2020.04.003

SAROGLOU, T., MEIR, I. A. Y THEODOSIOU, T. (2020). Improving the Energy Efficiency of a Mediterranean High-Rise Envelope. CTBUH Journal, (2). Recuperado de https://global.ctbuh.org/resources/papers/download/4301-improving-the-energy-efficiency-of-a-mediterranean-high-rise-envelope.pdf

VITERI, S. L. (2020). Piel de vidrio en oficinas en altura, hacia una arquitectura Eco-Tech. Universidad Politécnica de Madrid. Recuperado de http://oa.upm.es/57981/1/TFG_20_Larumbe_Viteri_Sof%C3%ADa.pdf

WU, Y. Y FLEMMER, C. (2020). Glass Curtain Wall Technology and Sustainability in Commercial Buildings in Auckland, New Zealand. International Journal of Built Environment and Sustainability, 7(2), 57-65. DOI: https://doi.org/10.11113/ijbes.v7.n2.495

YALAZ, E. T., TAVIL, A. U. Y CELIK, O. C. (2018). Lifetime performance evaluation of stick and panel curtain wall systems by full-scale testing. Construction and Building Materials, 170, 254-271. DOI: https://doi.org/10.1016/j.conbuildmat.2018.03.061

Publicado

2021-06-30

Como Citar

de Gastines, M., & Pattini, A. (2021). Fachadas vidriadas: cálculo de transmitancia térmica. Hábitat Sustentable, 11(1), 08–19. https://doi.org/10.22320/07190700.2021.11.01.01

Edição

Secção

Artículos