Análise térmica de paredes de pau a pique leve para diferentes temperaturas de projeto na Argentina
DOI:
https://doi.org/10.22320/07190700.2024.14.02.11Palavras-chave:
pau a pique, condutividade térmica, conforto internoResumo
Analisou-se o desempenho térmico de paredes de pau a pique leve (em espanhol quincha alivianada) em diferentes zonas bioclimáticas da Argentina, que surgem como uma alternativa sustentável a outros materiais de construção. As condutividades térmicas do enchimento de pau a pique (0,07 W/mK) e do reboco (0,34 W/mK) foram determinadas experimentalmente, obtendo-se uma transmitância térmica geral de 0,79 W/m²K para paredes de 15,6 cm de espessura. Com base em medições in situ em uma casa, foi demonstrada a capacidade das paredes de pau a pique leve para manter a estabilidade térmica interna, com amplitudes térmicas significativamente menores em comparação com o exterior. A análise comparativa com tijolos maciços e tijolos ocos concluiu que as paredes de pau a pique exigem menos espessura para atingir níveis ideais de isolamento, adaptando-se a diversas zonas bioclimáticas. Esta técnica de construção permite a replicabilidade no contexto argentino, destacando-se por sua eficiência térmica, sustentabilidade e conforto interior, com oportunidades futuras para explorar sua resistência ao fogo.
Downloads
Referências
Agencia para el Desarrollo Económico de la Ciudad de Córdoba ham (Adec). (2019) - Proyecto N°182-Atlas Dinámico De Envolventes. Atlas dinámico de envolventes. Atlas de comportamiento energético en régimen dinámico de envolventes constructivas. Instituto de Sustentabilidad Edilicia - Colegio de Arquitectos de la Provincia de Córdoba.
ACEVEDO OLIVA, R., CARRILLO ZUÑIGA, O. R., y BROUGHTON, J. (2017). Construcción en quincha liviana. Sistemas constructivos sustentables de reinterpretación patrimonial. https://csustentable.minvu.gob.cl/wp-content/uploads/2020/03/CONSTRUCCION_CON_QUINCHA_LIVIANA_1a_edicion.pdf
ASDRUBALI, F., D'ALESSANDRO, F., y SCHIAVONI, S. (2015). A review of unconventional sustainable building insulation materials. Sustainable Materials and Technologies,4, 1-17. https://doi.org/10.1016/j.susmat.2015.05.002
American society for testing and materials [ASTM]. (2013). ASTM C177-13 (2013). Standard test method for steady-state heat flux measurements and thermal transmission properties by means of the guarded-hot-plate apparatus. https://www.astm.org/c0177-19.html
BURATTI, C., BELLONI, E., MERLI, F., y ZINZI, M. (2021). Aerogel glazing systems for building applications: A review. Energy and Buildings, 231, 110587. https://doi.org/10.1016/j.enbuild.2020.110587
CASTILLO QUIMIS, E. L., MITE PEZO, J. A., y PÉREZ ARÉVALO, J. J. (2019). Influencia de los materiales de la envolvente en el confort térmico de las viviendas. Programa Mucho Lote II, Guayaquil. Revista Universidad y Sociedad, 11(4), 303-309. https://rus.ucf.edu.cu/index.php/rus/article/view/1306
CUITIÑO ROSALES, M. G., MALDONADO, N. G., y ESTEVES MIRAMONT, A. (2014). Analysis of the Mechanical Behavior of Prefabricated Wattle and Daub Walls. International Journal of Architecture, Engineering and Construction, 3, (4), 235-246. https://ri.conicet.gov.ar/handle/11336/32338
CUITIÑO, G., ESTEVES, A., MALDONADO, G., y ROTONDARO, R. (2015). Análisis de la transmitancia térmica y resistencia al impacto de los muros de quincha. Informes de la Construcción, 67(537), e063-e063. https://doi.org/10.3989/ic.12.082
FORGIARINI RUPP, R., GIRALDO VÁSQUEZ, N., y LAMBERTS, R. (2015). A review of human thermal comfort in the built environment. Energy and Buildings, 105, 178-205. https://doi.org/10.1016/j.enbuild.2015.07.047
GARCÍA LEÓN, R. A., FLÓREZ-SOLANO, E. y ESPINEL BLANCO, E. (2017). Conductividad térmica de polvos de arcillas utilizadas en la industria cerámica de Ocaña Norte de Santander y la región. Revista Ingenio, 13(1), 1-9. https://portal.amelica.org/ameli/journal/814/8145075001/
GONZÁLEZ COURET, D. G., y VÉLIZ PÁRRAGA, J. F. V. (2016). Resiliencia urbana y ambiente térmico en la vivienda. Arquitectura y Urbanismo, 37(2), 63-73. https://rau.cujae.edu.cu/index.php/revistaau/article/view/470
HAM, H. J., LEE, S., y KIM, H. -J. (2024). The Impact of Residential Building Insulation Standards on Indoor Thermal Environments and Heat-Related Illness Risks During Heatwaves: A Case Study in Korea. Sustainability, 16(22), 9831. https://doi.org/10.3390/su16229831
HOWDEN-CHAPMAN, P., MATHESON, A., CRANE, J., VIGGERS, H., CUNNINGHAM, M., BLAKELY, T., CUNNINGHAM, C., WOODWARD, A., SAVILLE-SMITH, K., O'DEA, D., KENNEDY, M., BAKER, M., WAIPARA, N., CHAPMAN, R., y DAVIE, G. (2007). Effect of insulating existing houses on health inequality: cluster randomised study in the community. BMJ (Clinical research ed.), 334(7591), 460. https://doi.org/10.1136/bmj.39070.573032.80
IRAM 11559. (1995). Acondicionamiento térmico. Determinación de la Resistencia térmica y propiedades conexas en régimen estacionario. Método de la placa caliente con guarda. Instituto Argentino de Normalización y Certificación. Buenos Aires: IRAM
IRAM 11605. (1996). Acondicionamiento térmico de edificios. Condiciones de habitabilidad en edificios. Valores máximos de transmitancia térmica en cerramientos opacos. Instituto Argentino de Normalización y Certificación. Buenos Aires: IRAM.
IRAM 11549. (2002). Aislamiento térmico de edificios. Vocabulario. Instituto Argentino de Normalización y Certificación. Buenos Aires: IRAM
IRAM 11601. (2002). Aislamiento térmico de edificios. Método de cálculo – Propiedades térmicas de los componentes y elementos de construcción en régimen estacionario. Instituto Argentino de Normalización y Certificación. Buenos Aires: IRAM
IRAM 11950. (2010). Resistencia al fuego de los elementos de la construcción - Método de ensayo. Instituto Argentino de Normalización y Certificación. Buenos Aires: IRAM.
IRAM 11603. (1996). Acondicionamiento térmico de edificios. Clasificación bioambiental de la República Argentina. Instituto Argentino de Normalización y Certificación. Buenos Aires: IRAM.
IRAM 11603. (2012). Acondicionamiento térmico de edificios. Clasificación bioambiental de la República Argentina. Instituto Argentino de Normalización y Certificación. Buenos Aires: IRAM.
ISO 8302. (1991). Thermal Insulation, Determination of Steady-State Areal Thermal Resistance and Related Properties--Guarded-Hot-Plate Apparatus. The International Organization for Standardization. https://www.iso.org/standard/15422.html
KREITH, F., y GOSWAMI, D. Y. (Eds.). (2007). Handbook of energy efficiency and renewable energy. Crc Press, Taylor & Francis Group
LAKATOS, Á. (2022). Novel Thermal Insulation Materials for Buildings. Energies, 15(18), 6713. https://doi.org/10.3390/en15186713
MAC DONNELL, H. P. (2014). Los muros exteriores: Análisis de muros empleados en la actualidad. Revista Vivienda. Buenos aires.
MATTEUCCI, S. D. (2012). Ecorregión Estepa Patagónica. Ecorregiones y complejos ecosistémicos argentinos. En J. MORELLO, S. D. MATTEUCCI, A. F. RODRIGUEZ y M. E. SILVA, Ecorregiones y complejos ecosistémicos argentinos (pp. 549-654). Orientación Gráfica Editora SRL, Buenos Aires,
MUÑOZ, C., ZAROR, C., SAELZER, G., y CUCHÍ, A. (2012). Estudio del flujo energético en el ciclo de vida de una vivienda y su implicancia en las emisiones de gases de efecto invernadero, durante la fase de construcción Caso Estudio: Vivienda Tipología Social. Región del Biobío, Chile. Revista de la construcción, 11(3), 125-145. http://dx.doi.org/10.4067/S0718-915X2012000300011
Red Protierra Argentina, 2024. Relevamiento y análisis de normas jurídicas y técnicas referidas a la construcción con tierra vigentes en la República Argentina. https://redprotierra.com.ar/2020/07/15/relevamiento-y-analisis-de-normativas-de-construccion-con-tierra-en-argentina/
REY MARTÍNEZ, F. J., y VELASCO GÓMEZ, E. (2006). Eficiencia energética en edificios. Certificación y auditorías energéticas: certificación y auditorías energéticas. Ediciones Paraninfo, SA.
SÁNCHEZ AZÓCAR, J. R. (2011). Análisis de Factibilidad Técnica y Económica para la Incorporación de una Empresa de Rehabilitación Térmica de Viviendas Usadas, en el Mercado de la Construcción Chilena [Tesis de Magíster, Universidad de Chile] Repositorio Académico de la Universidad de Chile. https://repositorio.uchile.cl/handle/2250/102639
VANHOUTTEGHEM, L., y SVENDSEN, S. (2014). Modern insulation requirements change the rules of architectural design in low-energy homes. Renewable energy, 72, 301-310. https://doi.org/10.1016/j.renene.2014.07.005
World Health Organization [WHO]. (2018). Housing and health guidelines. Geneva: World Health Organization. https://apps.who.int/iris/bitstream/handle/10665/275838/WHO-CED-PHE-18.02-eng.pdf
ZHAO, R., GUO, H., YI, X., GAO, W., ZHANG, H., BAI, Y., y WANG, T. (2020). Research on Thermal Insulation Properties of Plant Fiber Composite Building Material: A Review. International Journal of Thermophys, 41(87). https://doi.org/10.1007/s10765-020-02665-0
ZHOVKVA, O. (2020). Energy efficiency and environmental friendliness, as important principles of sustainability for multifunctional complexes. Revista ingeniería de construcción, 35(3), 308-320. https://doi.org/10.4067/S0718-50732020000300308
Downloads
Publicado
Como Citar
Edição
Secção
Licença
Direitos de Autor (c) 2024 Maria Guadalupe Cuitiño-Rosales, Alejandro Domínguez, Gabriel Vaccaro, Victoria Di-Cesare

Este trabalho encontra-se publicado com a Licença Internacional Creative Commons Atribuição-CompartilhaIgual 4.0.
O conteúdo dos artigos publicados em cada número do Habitat Sustentável é da exclusiva responsabilidade dos autores e não representa necessariamente o pensamento ou compromete a opinião da Universidad del Bío-Bío.
Os autores mantêm os seus direitos de autor e concedem à revista o direito de primeira publicação da sua obra, que está simultaneamente sujeita à Licença de Atribuição Creative Commons CC BY-SA que permite a outros partilhar, transformar ou criar novo material a partir desta obra para fins não comerciais, desde que a autoria e a primeira publicação nesta revista sejam reconhecidas, e as suas novas criações sejam licenciadas sob os mesmos termos.