Application of the WUDAPT method in the city of Mendoza-Argentina to define Local Climate Zones

Authors

  • María Florencia Colli Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET) - Instituto de Ambiente, Hábitat y Energía (INAHE) CCT, Mendoza, Argentina
  • Érica Norma Correa Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET) - Instituto de Ambiente, Hábitat y Energía (INAHE) CCT, Mendoza, Argentina
  • Claudia Fernanda Martinez Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET) - Instituto de Ambiente, Hábitat y Energía (INAHE) CCT, Mendoza, Argentina

DOI:

https://doi.org/10.22320/07183607.2020.23.42.02

Keywords:

urban climate, zoning, LCZ, urban morphology, Mendoza Metropolitan Area

Abstract

The work applies the Local Climate Zones model in the Mendoza Metropolitan Area (AMM in Spanish), using the WUDAPT method and makes a critical analysis of its implementation feasibility based on the characteristics of the city. As a hypothesis, having a zoning of homologated urban structures according to their microclimatic condition is the first step to make the implementation of different urban heat island mitigation strategies effective on a city scale. The limitations of the WUDAPT method (World Urban Database Access Portal Tools) in the study area are linked to two factors: the definition of classes for zoning and the necessary homogeneity condition to determine training areas. The results show that the WUDAPT classification is structured in pure classes, with the impossibility of generating subclasses. The pure classes are defined according to the combination of a set of parameters that do not fully describe the condition of the urban profiles of the AMM in summer. In this season, the trees in rows act as a morphological structuring element. This implies the need to generate subclasses, affecting the relationship between Sky View Factor, road channel height/width ratio, Land Occupancy Factor, impermeable surface and average height. Another limitation is the size of the training areas, which require homogeneous areas of 1 km2, a difficult condition to fulfill in the AMM. In this work, the tool with standard classes has been adapted for the appropriate characterization of climatic zones in cities with abundant urban forestation, whose typology is growing in Latin America. It is concluded that once limitations of the tool are overcome, the climatic zones identified within the analysis area show correlation with the landscape in different sectors of the city and intra-class thermal homogeneity.

Downloads

Download data is not yet available.

Author Biographies

María Florencia Colli, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET) - Instituto de Ambiente, Hábitat y Energía (INAHE) CCT, Mendoza, Argentina

Geográfa; becaria doctoral de CONICET-INAHE-CCT, Doctorado Mención Civil-Ambiental, Facultad Regional Mendoza (FRM), Universidad Tecnológica Nacional (UTA).

Érica Norma Correa, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET) - Instituto de Ambiente, Hábitat y Energía (INAHE) CCT, Mendoza, Argentina

Doctora en Ciencias; investigadora independiente CONICET; docente de grado y posgrado, Facultad Regional Mendoza (FRM), Universidad Tecnológica Nacional (UTA).

Claudia Fernanda Martinez, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET) - Instituto de Ambiente, Hábitat y Energía (INAHE) CCT, Mendoza, Argentina

Doctora en Ciencias Biológicas; investigadora adjunta CONICET; docente de la especialización, maestría y doctorado, Facultad Regional Mendoza (FRM), Universidad Tecnológica Nacional (UTA).

References

Akbari H. y Konopacki S. (2004). Energy effects of heat-island reduction strategies in Toronto, Canada. Energy and Buildings, 29, 191-210. DOI:10.1016/j.energy.2003.09.004

Alchapar N. y Correa E. (2016) The use of reflective materials as a strategy for urban cooling in an arid “oasis” city. Sustainable Cities and Society, 27, 1-14. DOI: https://doi.org/10.1016/j.scs.2016.08.015.

Alchapar N., Correa E. y Cantón M. A. (2018). ¿Techos reflectivos o verdes? Influencia sobre el microclima en ciudades de zonas áridas. Mendoza-Argentina. Cuadernos de Vivienda y Urbanismo, 11(22) 1-23, DOI: https://doi.org/10.11144/Javeriana.cvu11-22.trvi

Arellano Ramos, B. y Roca Cladera, J. (2015). Planificación Urbana y Cambio Climático. En International Conference on Regional Science. XVI Reunión de Estudios Regionales. Centro de Política de Suelo y Valoraciones (CPSV). Universidad Politécnica de Cataluña, Barcelona, España, 18-20 noviembre.

Bechtel, B.; Alexander, P. J.; Böhner, J.; Ching, J.; Conrad, O.; Feddema, J.; Mills, G., … y Stewart, I. (2015). Mapping Local Climate Zones for a Worldwide Database of the Form and Function of Cities. International Journal of Geographic Information, 4(1), 199-219. DOI: https://doi.org/10.3390/ijgi401019

Castro Conrado, Y., Fernández Figueroa, E., Álvarez, A. y López, A. (2014). Morfología urbana en la ciudad de Sagua la Grande. Arquitectura y Urbanismo, 35(3), 50-68.

Correa, E. (2006). Isla de Calor Urbana. El Caso del Área Metropolitana de Mendoza. Tesis Doctoral. Universidad Nacional de Salta. Facultad de Ciencias Exactas.

Fernández García, F. y Martilli, A. (2016). Estudio de detalle del Clima Urbano De Madrid. https://www.madrid.es/UnidadesDescentralizadas/SostenibilidadEspeInf/EnergiayCC/04CambioClimatico/4cEstuClimaUrb/Ficheros/EstuClimaUrbaMadWeb2016.pdf

Flores Asin, J. E. (2019). Tecnologías verdes en zonas áridas. Diseño y evaluación energético-ambiental de sistemas de vegetación de aplicación en cubiertas edilicias. Tesis Doctoral. Universidad Nacional de Salta. Facultad de Ciencias Exactas Grimmond, C.S.B., Roth, M., Oke, T.R., Au, Y.C., Best, M., Betts, R. y Freitas, E.(2010). Climate and More Sustainable Cities: Climate Information for Improved Planning and Management of Cities. Procedia Environmental Sciences, 1, 247–274.

Hirano, Y. y Fujita, T. (2012). Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo. Energy, 37(1), 371-383.

Linares, S. y Tisnés, A. (2011). Extracción y análisis de superficies urbanas construidas empleando imágenes Landsat 5 (TM). En I Congreso Nacional de Tecnologías de la Información Geográfica - IV Reunión de Usuarios de Tecnologías de la Información Geográfica del NEA (pp. 180-191). Facultad de Humanidades - UNNE, Laboratorio de Tecnologías de la Información Geográfica, IIGHI - CONICET. Resistencia, Corrientes, Argentina, 14-15 de abril.

Luber, G. y McGeehin, M. (2008). Climate change and extreme heat events. American Journal of Preventive Medicine, 35(5), 429-435. Martínez, C. F., Cantón, M. A. y Roig, F. A. (2014). Incidencia del déficit hídrico en el crecimiento de forestales de uso urbano en ciudades de zonas áridas. Caso de Mendoza, Argentina. Interciencia Revista de Ciencia y Tecnología de América, 39(12), 890-897.

Monteiro, V. (2018). Zonas Climáticas Locais E A Relação Com A Morfologia Urbana. Estudo de Caso: Campinas/Sp. Biblioteca Digital Pontificia Universidade de Campinas. Recuperado de http://tede.bibliotecadigital.puc-campinas.edu.br:8080/jspui/handle/tede/1047?mode=full

Palme, M., Inostroza, L., Villacreses, G., Lobato-Cordero, A. y Carrasco, C. (2017) From urban climate to energy consumption. Enhancing building performance simulation by including the urban heat island effect. Energy and Buildings, 145, 107-120. DOI: https://doi.org/10.1016/j.enbuild.2017.03.069

Pantavou, K., Theoharatos, G., Mavrakis, A. y Santamouris, M. (2011). Evaluating thermal comfort conditions and health responses during an extremely hot summer in Athens. Building and Environment, 46(2), 339-344. DOI:10.1016/j.buildenv.2010.07.026.

Pezzuto, C. y Silva, J. M. P. (2013). Métodos de Análisis del Recorte Territorial por medio de la Zona Climática Local y Unidad de Paisaje: Estudio de Caso en el Municipio de Campinas. En XII ENCAC. Brasilia, Brasil. 25-27 Setembro. Recuperado de http://antac.pcc.usp.br/eventos/encac-elacac-2013

Piccone, N. (2014). Clima Urbano de la ciudad de Tandil. Tesis Doctoral. Universidad Nacional de Sur. Departamento de Geografía y Turismo. DOI:10.13140/RG.2.1.2083.8808

Puliafito, S., Bochaca, F., Allende, D. y Fernández, R. (2013). Green áreas and microscale thermal comfort in arid environments: A case study in Mendoza, Argentina. Atmospheric and Climate Sciences, 3(03), 372–384.

Roca, G., Puliafito, S., Allende, D., Ruggieri, F. y Pascual, R. (2016). Modelado urbano a microescala: contribución al confort urbano de ecosistemas áridos. Revista AVERMA, (4), 01.77-01.88.

Ruiz, M.A. (2013). Efectos microclimáticos de la vegetación en ciudades de zonas áridas. Incidencia sobre los consumos energéticos y la calidad ambiental del hábitat. Tesis Doctoral. Universidad Nacional de Salta. Facultad de Ciencias Exactas.

Ruiz, M.A., Sosa, M.B., Correa, E.N. y Cantón, M.A. (2015). Suitable configurations of forested urban canyons to mitigate the UHI in Mendoza city, Argentina. Urban Climate, 14, 197-212. DOI: https://doi.org/10.1016/j.uclim.2015.05.005

Sakka, A., Santamouris, M., Livada, I., Nicols, F. y Wilson, M. (2012). On the thermal performance of low income housing during heat waves. Energy and Buildings, 49, 69-77. DOI: https://doi.org/10.1016/j.enbuild.2012.01.023.

Salvati, A., Palme, M. y De la Barrera, F. (2018). Urban morphology parametrization for climate modelling in urban planning. En 10th International Conference on Urban Climate/14th Symposium on the Urban Environment. 6-10

August 2018. New York, USA. Recuperado de https://www.ametsoc.org/index.cfm/ams/meetings-events/ams-meetings/10th-international-conference-onurban-climate-14th-symposium-on-the-urban-environment/

Santamouris, M., Cartalis, C., Synnefa, A. y Kolokotsa, D. (2015). On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings—A review. Energy and Buildings, 98, 119-124. DOI: https://doi.org/10.1016/j.enbuild.2014.09.052.

Sarrat, C., Lemonsu, A., Masson, V. y Guedalia, D. (2006). Impact of urban heat island on regional atmospheric pollution. Atmos Environ, 40, 1743-1758. DOI: https://doi.org/10.1016/j.atmosenv.2005.11.037

Sosa, M.B (2018). Estrategias de mitigación de la isla de calor sustentabilidad ambiental y eficiencia energética de perfiles urbanos de baja densidad en zonas áridas. Tesis Doctoral. Universidad Nacional de Salta. Facultad de Ciencias

Exactas.

Sosa, M.B., Correa, E. y Cantón, M. A. (2018). Neighborhood Designs For Low Density Social Housing Energy Efficiency. A Study For An Arid City In Argentina. Energy and Building, 168, 137-146. DOI: https://doi.org/10.1016/j.enbuild.2018.03.006

Stewart, I. D. y Oke, T. R. (2012). Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 93(12), 1879-1900.

Stewart, I. D., Oke, T. R. y Krayenhoff, E. S. (2014). Evaluation of the local climate zone scheme using temperature observations and model simulations. International Journal of Climatology, 34 (4), 1062-1080. DOI: https://doi.org/10.1002/joc.3746

Stocco, S. (2016). Impacto de la morfología y materialidad de las plazas en la calidad energético-ambiental de ciudades emplazadas en zonas áridas. Tesis Doctoral. Universidad Tecnológica Nacional (regional Mendoza) UTN.

Taha, H. (2008). Meso-urban meteorological and photochemical modeling of heat island mitigation. Atmospheric Environment, 42(38), 8795-8809. DOI: https://doi.org/10.1016/j.atmosenv.2008.06.036

Villalba, R., Boninsegna, J.A., Masiokas, M.H., Cara, L., Salomon, M., Pozzoli, P. (2016). Cambios Climáticos y Recursos Hídricos: El caso de las tierras secas del oeste argentino. Ciencia Hoy, 45, 49-55.

Wang, C., Ariane, M., Myint, S., Kapla, S., Brazel, A.J. y Lukasczyk, J. (2018). Assessing local climate zones in arid cities: The case of Phoenix, Arizona and Las Vegas, Nevada. Journal of Photogram and Remote Sensing, 141, 59-71. DOI: https://doi.org/10.1016/j.isprsjprs.2018.04.009

Published

2020-11-30

How to Cite

Colli, M. F., Correa, Érica N., & Martinez, C. F. (2020). Application of the WUDAPT method in the city of Mendoza-Argentina to define Local Climate Zones. Urbano, 23(42), 18–31. https://doi.org/10.22320/07183607.2020.23.42.02

Issue

Section

Artículos