Assessment of physical, mechanical, and biological properties of bamboo plastic composite made with polylactic acid

  • Moein Dehghan
  • Mehdi Faezipour
  • Majid Azizi
  • Hamid Zarea Hosseinabadi
  • Ehsan Bari
  • Darrel D. Nicholas
Keywords: Bambusa arundinacea, biodegradable polymer, decay resistance, flexural strength, heat treatment, water absorption


The effects of different mixing, bamboo mesh size and heat treatment on the physical and mechanical properties and biodegradability of a polylactic acid (PLA) composite were determined. The results indicated that this composite exhibited high strength in all mechanical properties examined, except hardness using the pure polymer (PLA). The mesh size of the bamboo flour and heat treatment had considerable effects on all tests expect the decay resistance. The water absorbance and thickness swelling of the PLA composite was reduced to nearly zero after 3000 hours immersion in water. Moreover, the fungal decay test results demonstrated that PLA was highly resistant to both Basidiomycetes and Ascomycetes fungi. The brown rot fungi, however, produced an extensive mass loss in the composite composed of different levels of bamboo flour.


American Standard for Testing and Material (ASTM International). 2016. Test method for the flexural properties of unreinforced and reinforced plastics and electrical insulation materials. Standard D790-90.

American Standard for Testing and Material (ASTM International). 2016. Test method for tensile properties of plastics. Standard D638-09.

American Standard for Testing and Material (ASTM International). 2016. Standard methods for testing determining the Izod pendulum impact resistance of plastics. Standard D 256–4.

American Standard for Testing and Material (ASTM International). 2016. Test methods for rubber property durometer hardness. Standard D2240-03.

American Standard for Testing and Material (ASTM International). 2005. Standard guide for evaluating mechanical and physical properties of wood-plastic composite products. Standard D7031-04.

Bahari, SA.; Krause, A. 2016. Utilizing Malaysian bamboo for use in thermoplastic composites. J Clean Prod 16-24.‏

Bari, E.; Sistani, A.; Taghiyari, HR.; Morrell, JJ.; Cappellazzi, J. 2017. Influence of test method on biodegradation of bamboo-plastic composites by fungi. Maderas-Cienc Tecnol 455-462.

Bari, E.; Taghiyari, HR.; Schmidt, O.; Ghorbani, A.; Aghababaei, H. 2015. Effects of nano-clay on biological resistance of wood-plastic composite against five wood-deteriorating fungi. Maderas-Cienc Tecnol 205-212.

Bastani, A.; Adamopoulos, ST.; Militz, H. 2016. Shear strength of furfurylated, N-methylol melamine and thermally modified wood bonded with three conventional adhesives. Wood Mater Sci Eng 236–241.

Bataille, P.; Richard, L.; Sapieh, S. 1989. Effect of cellulosic fibers in polypropylene composites. J Polym Compos 118-124.

Behr, G.; Bollmus, S.; Gellerich, A.; Militz, H. 2017. Improvement of mechanical properties of thermally modified hardwood through melamine treatment. Wood Mater Sci Eng 1-

Bledzki, AK.; Reihmane, S.; Gassan, J. 1998. Thermoplastics reinforced with wood fillers:a literature review. Polym Plast Technol Eng 451–68.

Bravery, AF. 1978. A miniaturised wood-block test for the rapid evaluation of wood preservative fungicides. Document No. IRG/WP 2113. International Research Group on Wood Protection, Stockholm.

Chaharmahali, M. 2005. Possibility of making plastic composite composites of particleboard and hexagonal fiber boards and heavy polyethylene (HDPE) waste, Master thesis, Tarbiat Modarres University.

Chotirat, L.; Chaochanchaikul, K.; Sombatsompop, N. 2007. On adhesion mechanisms and interfacial strength in acrylonitrile–butadiene–styrene/wood sawdust composites. Int J Adhes Adhes 669- 678.

Cho, C.H., Lee, K.H., Kim, J.S. and Kim, J.S. 2008. Micromorphological characteristics of bamboo (Phyllostachys pubescens) fibers degraded by a brown rot fungus (Gloeophyllum trabeum). J Wood Sci 54: 261-265.

Eshaghi, S.; Faezipour, M.; Taghiyari, HR. 2013. Investigation on lateral resistance of joints made with drywall and sheet metal screws in bagasse particleboard and comparison with that of commercial MDF. Maderas-Cienc Tecnol 127–140.

Esteves B.; Velez-Marques, A.; Domingos, I.; Pereira, H. 2007. Influence of steam heating on the properties ofpine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood Sci Technol 41-193.

Fabiyi, JS.; Donald, AG.; Morrell, J.; Freitag, C. 2011. Effects of wood species on durability and chemical changes of fungal decayed wood plastic composites. Compos Part A-Appl S 501-510.

Gholizadeh, M.; Jamalirad, L.; Aminian, H.; Hedjazi, H. 2015. Investigation on Mechanical Properties of polypropylene composite reinforced with tobacco stalk. J For Wood Prod 261-272.

Goda, K., Sreekala.; MS., Malhotra, SK.; Joseph, K.; Thomas, S. 2013. Advances in Polymer Composites: Biocomposites – state of the art, new challenges, and opportunities. In: Vol 3, biocomposites. Weinheim: Wiley-VCH, 1-10.

Gram, HE. 1983. Durability of natural fibers in concrete. Swedish Research and Concrete Research Institute, Stockholm.

Heidari Gorji, A.; Shakeri, A.; Tabarsa, T.; Omidvar, A. 2011. Comparative nvestigation on the properties polypropylene-sanding fines and dust composites J Wood For Sci Technol 31-48.

Hill, C. 2006. Wood modification: chemical, thermal and other processes. John Wiley & Sons, Chichester.

Huber, T.; Graupner, N.; Müssig, J. 2010. Natural fibre composite processing: A aechnical overview. In: Müssig J. (Ed.), Industrial applications of natural fibres: structure, properties and technical applications. Chichester: John Wiley & Sons 409-421.

Kollmann, F.; Cote, W. 1975. Principles of wood science and technology. Volume 1, Solid wood, Springer- Verlag, New York.

Liu, L.;Fishman, ML.; Hicks, KB.; Liu, CK. 2005. Biodegradable composites from sugar beet pulp and poly (lactic acid). J Agr Food Ch 9017-9022.‏

Madhoushi, M.; Nadalizadeh, H.; Ansell, MP. 2009. Withdrawal strength of fasteners in rice straw fibre–thermoplastic composites under dry and wet conditions. Polymer Testing 301-306.

Manalo, RD.; Acda, MA. 2009. Effects of hot oil treatment on physical and mechanical properties of three species of Philippine Bamboo. J Trop Forest Sci 19-24.

Mazela, B.; Zakrzewski, R.; Grzes Kowiak, W.; Cofta, G.; Bartkowiak, M. 2004. Resistance of thermally modified wood to basidiomycetes. Wood Technol 253-262.

Martin, O.; Avérous, L. 2001. Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42 6209-6219.

Mehedushi, M.; Ghanbari, A.; Zabih Zazadeh, SM. 2012. Effect of fiber content, size and type on board density and withdrawal strength of fasteners in natural fiber-plastic composites made through dry process.The effect of type, size and percentage of fiber on the density and the strength of the fasteners in the composite of natural-plastic fibers made by dry method. J For Wood Prod 363-376.

Mohanty, AK.; Misra, M.; Drzal, LT.; Selke, SE.; Harte, BR.; Hinrichsen, G. 2005. Natural fibers, biopolymers, and biocomposites: an introduction. In: Mohanty AK, Misra M, Drzal LT. (Eds.), Natural fibers, biopolymers, and biocomposites. CRC Taylor & Francis; Ch1.

Mohanty,AK.; Misra, M.; Hinrichsen, G. 2000. Biofibers, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 1–24.

Najafi, A.; Faeizipour, M.; Khademi, Islam.; H., Kazemi Najafi, S.; Hsami, A, 2008. Flexural properties of wood-plastic composites made from lignocellulosic fillers and recycled high density polyethylene manufactured using a dry blend/hot press method. Iranian J Wood Pap Sci Res 109-120.

Oksman, K.; Lindberg, H. 1998. Influence of thermoplastic elastomers on adhesion in polyethylene-wood flour composites. J Appl Polym Sci 1845-1855.

Poho, M.; taklau, K. 2015. mprovement on the properties of polylactic acid (PLA) using bamboo charcoal particle. Compos Part B-Eng 14-25.

Rapp, AO.; Sailer, M. 2001. Oil heat treatment of wood in Germany-State of the art. Review on heat treatments of wood. In: Rapp, A.O. (Ed.) Proceedings of the Special Seminar, 9th Feb., Antibes, France, Forestry and Forestry Products, France. COST Action E22, EUR;19885: 43-60.

Rozman, HD.; Tay, GS.; Kumar, RN.; Abusamah, A.; Ismail, H.; Ishak, ZM. 2001. Polypropylene–oil palm empty fruit bunch–glass fibre hybrid composites: a preliminary study on the flexural and tensile properties. Eu Polym J 1283-1291.

Shahraki, A.; Nosrati Shashkol, B.; Mohebbi Gargari, R.; Abdus, M. 2016. The effect of nano clay and MAPP coupling agent on physical, mechanical and natural durability of polypropylene Haloxylon wood flour composite. J Wood For Sci Technol 265-284.

Shakeri, A.; Omidvar, A. 2006. Effect of type amount and size of straw particles on the mechanical properties of composites. Polym Sci Technol 301-308.

Sharma, RS.; Raghupathy, VP.; Rao, SS.; Shubhanga, P. 2010. Review of recent trends and developments in biocomposites. Search date 27/01/2011, available from

Stark, NM.; Rowlands, RE. 2007. Effects of wood fiber characteristics on mechanical properties of wood/polypropylene composites. Wood Fiber Sci 167-174.‏

Suganya, S.; Kumar, PS.; Saravanan, A. 2017. Construction of active bio-nanocomposite by inseminated metal nanoparticles onto activated carbon: probing to antimicrobial activity. IET Nanobiotechnol 746–753.

Taghiyari, HR. 2011. Study on the effect of nano-silver impregnation on mechanical properties of heat-treated Populus nigra. Wood Sci Technol 399–404.

Taghiyari, HR.; Bari, E.; Schmidt, O.; TajickGhanbary, MA.; Karimi, A.; Tahir, PMD. 2014. Effects of nanowollastonite on biological resistance of particleboard made from wood chips and chicken feather against Antrodia vaillantii. Int Biodeterior Biodegrad 93–98.

Tajvidi, M. 2004. Investigation of engineering and viscoelastic properties of composites made of thermoplastic polymers and natural fibers using dynamic-mechanical analysis. PhD thesis. Faculty of Natural Resources, University of Tehran.

Tajvidi, M.; Gardner, DJ.; Bousfield, DW. 2016. Cellulose Nanomaterials as Binders: Laminate and Particulate Systems. J Renew Mater 365-376.

Tjeerdsma, BF.; Boonstra, M.; Pizzi, A.; Tekely, P.; Milit. 1998. Characterization of thermal modified wood: molecular reasons for wood performance improvement. CPMAS 13 CNMR characterization of thermally modified wood. Holz Roh- und Werkstoff 149-153.

Van den Oever, M.; Bos, H. 2010. Composites based on natural resources. Müssig J. (Ed), Industrial applications of natural fibres: structure, properties and technical applications. John Wiley & Sons, Chichester 438-458.

Velasco, J.; De Saja, J.; Martinez, A. 1996. Crystallization behavior of polypropylene filled with surface-modified talc. J Appl Polym Sci 82–88.

Verma, CS.; Chariar, VM. 2012. Development of layered laminate bamboo composite and their mechanical properties. Compos Part B-Eng 1063-1069.‏

Yildiz, S., 2002. Effects of heat treatment on water repellence and anti-swelling efficiency of beech wood. International Research Group Wood Pre, IRG/WP;02-40223.
How to Cite
Dehghan, M., Faezipour, M., Azizi, M., Zarea Hosseinabadi, H., Bari, E., & D. Nicholas, D. (2019). Assessment of physical, mechanical, and biological properties of bamboo plastic composite made with polylactic acid. Maderas. Ciencia Y Tecnología, 21(4). Retrieved from

Most read articles by the same author(s)