Characterizations of tree-decay fungi by molecular and morphological investigationsin aniranian alamdardeh forest


  • Ehsan Bari
  • Kaivan Karimi
  • Hamed Aghajani
  • Olaf Schmidt
  • Soleiman Zaheri
  • Mohammad Ali Tajick-Ghanbary
  • Hakimeh Ziaie Juybari


Brown-rot fungi, forest trees, molecular identification, rDNA-ITS sequencing, tree rot fungi, white-rot fungi


Forest trees are considered important in ameliorating climate change through removing carbon dioxide from the atmosphere, for stabilizing water catchments and for timber production. Wood decay fungi are among the most important biotic factors in ecosystems, infecting valuable landscaping trees causing an economic loss or the preeminent recyclers of the wood. In a survey of forest trees in the Alamdardeh forest, northern Iran, fungal fruit bodies were collected and isolations made. Based on a combination of macro-morphological characteristics and molecular analyses, using the sequence data of ITS-rDNA, isolates were identified to the species level. A total of 22 species in nine families and 15 genera were identified. Most isolates were the white-rot fungi. Additionally, the brown-rot fungus Laetiporus sulphureus and the soft-rot species Xylaria longipes were indentified.


Download data is not yet available.


Abrego, N.; Halme, P.; Purhonen, J.; Ovaskainen, O. 2016. Fruit body based inventories in wood-inhabiting fungi: should we replicate in space or time? Fungal Ecol 20: 225-232.

Aghajani, H. 2012. Study on the oak(Quercus castaneifolia) and Hornbeam(Carpinus betulus) decaying macro fungi in mixed Oak-Hornbeam forest community in kheyroud Forest, North of Iran. M.Sc. thesis, Department of Forestry and forest economics. Faculty of Natural resources. University of Tehran, Iran. 95p.

Aghajani, H.; Marvie Mohadjer, M.R.; Asef, M.R.; Shirvany, A. 2013. The relationship between abundance of wood macrofungi on Chestnut-leave Oak (Quercus castaneifolia C.A.M.) and Hornbeam (Carpinus betulus L.) and physiographic factors (Case study: Kheyroud forest, Noshahr). Journal of Natural Environment, IJNRR 66(1): 1-12.

Aghajani, H.; Marvie Mohadjer, M.R.; Asef, M.R.; Shirvany, A. 2014. The relationship between wood-decay fungi abundance and some morphological features of Hornbeam (Case study: Kheyroud forest, Noshahr). Iranian Journal of Forest and Range Protection Research 12 (1): 55-65.

Aghajani, H.; Marvie Mohadjer, M.R.; Asef, M.R.; Shirvany, A. 2016 . Abundance of wood decay macrofungi in forest ecosystems with different management histories in the Kheyroud forest, Nowshahr, northern Iran. J Forest Res-JPN 1(4): 295-305.

Aghajani, H.; Mohadjer, M.R.M.; Bari, E.; Ohno, K.M.; Shirvany, A.; Asef, M.R. 2017. Assessing the Biodiversity of Wood Decay Fungi in Northern Forests of Iran. In Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 88(4): 1463-1469.

Aghajani, H.; Bari, E.; Bahmhani, M; Miha, H.; Tajick Ghanbary, M.A.; Nicholas, D.D.; Zahedian, E. 2018. Influence of Relative Humidity and Temperature on Cultivation of Pleurotus species. Maderas-Cienc Tecnol 20(4): 571-578.

Bari, E. 2014. Potential of biological degradation of oriental beech wood by the white-rot fungus Pleurotus ostreatus and the effects on mechanical and chemical properties there of and its comparison with standard the white-rot fungus Trametes versicolor. Ms.c thesis, Sari Agriculture and Natural Resources University, Sari, Iran.

Bari, E.; Nazarnezhad, N.; Kazemi, S.M.; Tajick Ghanbary, M.A.; Mohebby, B.; Schmidt, O.; Clausen, C.A. 2015a. Comparison of degradation capabilities of the white rot fungi Pleurotus ostreatus and Trametes versicolor. Int Biodeterior Biodegr 104: 231–237.

Bari, E.; Oladi, R.; Schmidt, O.; Clausen, C.A.; Ohno, K.; Nicholas, D.D.; Ghodskhah Daryaei, M.; Karim, M. 2015b. Influenceof xylem ray integrity and degree of polymerization on bending strength of beech wood decayed by Pleurotus ostreatus and Trametes versicolor. Int Biodeterior Biodegr 104: 299–306.

Bari, E.; Schmidt, O.; Oladi, R. 2015c. A histological investigation of Oriental beech wood decayed by Pleurotus ostreatus and Trametes versicolor. For Path 45: 349–357.

Bari, E.; Taghiyari, H.R.; Mohebby, B.; Clausen, C.A.; Schmidt, O.; Vaseghi, M.J. 2015d. Mechanical properties and chemical composition of beech wood exposed for 30 and 120 days to white-rot fungi. Holzforschung 69: 587–593.

Bari, E.; Taghiyari, H.R.; Naji, H.R.; Schmidt, O.; Ohno, M.K.; Clausen, C.A.; Bakar, E.S. 2016. Assessing the destructive behavior of two white-rot fungi on beech wood. Int Biodeterior Biodegr 114: 129-140.

Bari, E.; Karim, M.; Oladi, R.; Tajick Ghanbary, M.A.; Ghodskhah Daryaei, M.; Schmidt, O.; Benz, J.P.; Emaminasab, M. 2017. A comparison between decay patterns of the white-rot fungus Pleurotus ostreatus in chestnut–leaved oak (Quercus castaneifolia) shows predominantly simultaneous attack both in vivo and in vitro. For Path 47: e12338.

Bari, E.; Mohebby, B.; Naji, H.R.; Oladi, R.; Yilgor, N.; Nazarnezhad, N.; Ohno, K.; Nicholas, D.D. 2018. Monitoring the cell wall characteristics of degraded beech wood by white-rot fungi: anatomical, chemical, and photochemical study. Maderas-Cienc Tecnol 20(1): 35–56.

Bari, E.; Daniel, G.; Yilgor, N.; Kim, J.S.; Tajick Ghanbary, M.A.; Singh, A.P.; Ribera, J. 2020. Comparison of the decay behavior of two white-rot fungi in relation to wood type and exposure conditions. Microorganisms 8: 1931.

Bari E.; Bari, E., Pizzi, A., Schmidt, O., Amirou, S., Tajick Ghanbary, M.A., Humar, M. 2020. Differentiation of fungal destructive behaviour of wood by the white-Rot fungus Fomes fomentarius by MALDI-TOF Mass Spectrometry. J Renew Mater

Cao, Y.; Wu, S.H.; Dai, Y.C. 2012. Species clarification of the prize medicinal Ganoderma mushroom “ Lingzhi”. Fungal divers 56: 49-62.

Edgar, R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797.

Halme, P.; Kotiaho, J.S. 2012.The importance of timing and number of surveys in fungal biodiversity research. Biodivers Conserv 21: 205-219.

Hashemi, S.A.; Zare, R.; Khodaparast, K.; Elahinia, A. 2015. Phylogenetic analysis of Xylaria species in North of Iran based on ITS sequence data. 2nd Iranian Mycological Congress, University of Tehran, Karaj, Iran.

ImageJ 2020. Imaging Procesing and Analysis in Java.

Lombard, F.F.; Chamuris, G.P. 1990. Basidiomycetes. In Identification manual for fungi from utility poles in the eastern United States. Wang, C.J.K.; Zabel, R.A. (eds). Am Type Cult Coll, Rockville, United States. pp 21–104.

Luley, C.J. 2005. Wood decay fungi common to urban living trees in the Northeast and central United States. Urnan Forestry LLC, Naples, United States.

Marvie Mohadjer, M.R. 2011. Silviculture. 3nd ed. University of Tehran Press, Tehran, Iran.

Mullis, K.B.; Faloona, F.A. 1987. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Meth Enzymol 155: 35-50.

Nobles, M.K. 1965. Identification of cultures of wood-inhabiting hymenomycetes. Can J Bot 43: 1097–1139.

Nylander, J.A.A. 2004. Mr Modeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.

Kubartova, A.; Ottosson, E.; Dahlberg, A.; Stenlid, J. 2012. Patterns of fungal communities among and within decaying logs, revealed by 454 sequencing. Mol Ecol 21: 4514-4532.

Kauserud, H.; Högberg, B.; Knudsen, H.; Elbornes, S.A.; Schumacher, T. 2004. Molecular phylogenetics suggest a North American link between the anthropogenic dry rot fungus Serpula lacrymans and its wild relative S. himantioides. Mol Ecol 13: 3137–3146.

Pandey, K.K.; Pitman, A.J. 2003. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int Biodeterior Biodegr 52(3): 151-160.

Potyralska, A.; Schmidt O.; Moreth, U.; Lakomy, P.; Siwecki, R. 2002. rDNA-ITS sequence of Armillaria species and a specific primer for A. mellea. For Genet 9: 119-123.

Pristaš, P.; Kvasnová, S.; Gáperová, S.; Gašparcová, T.; Gáper, J.; Lehtijärvi, A. 2017. Application of MALDI-TOF mass spectrometry for in vitro identification of wood decay polypores. For Pathol e12352.

Rambaut, A. 2009. Fig Tree v1.3.1.

Ronquist, F.; Huelsenbeck, J.P. 2003. Mr Bayes 3: Bayesian phylogenetic inference under mixed models. J Bioinform 19: 1572–1574.

Ryvarden, L.; Gilbertson, R.L. 1993. European polypores. Part 1. Oslo: Fungiflora, Norway.

Ryvarden, L.; Gilbertson, R.L. 1994. European polypores. Part 2. Oslo: Fungiflora, Norway.

Schmidt, O. 2006. Wood and tree fungi. Biology, damage, protection, and use. Springer, Berlin, 334 pp.

Schmidt, O.; Kebernik, U. 1989. Characterization and identification of the dry rot fungus Serpula lacrymans by polyacrylamide gel electrophoresis. Holzforschung 43: 195-198.

Schmidt, O.; Moreth, U. 1998a. Characterization of indoor rot fungi by RAPD analysis. Holzforschung 52: 229-233.

Schmidt, O.; Moreth, U. 1998b. Detection of the dry rot fungus Serpula lacrymans by amplified ribosomal DNA restriction analysis. Int Research Group Wood Preserv. 10245. 8 pp.

Schmidt, O.; Moreth, U. 1999. rDNA-ITS sequence of Serpulalacrymans and other important indoor rot fungi and taxon-specific priming PCR for their detection. Int Research Group Wood Preserv. 10298. 10 pp.

Schmidt, O.; Moreth, U. 2000. Species-specific PCR primers in the rDNA-ITS region as a diagnostic tool for Serpula lacrymans. Mycol Research 104: 69-72.

Schmidt, O.; Moreth, U. 2002. Data bank of rDNA-ITS sequences from building-rot fungi for their identification. Wood Sci Technol 36: 429-433.

Schmidt, O.; Gaiser, O.; Dujesiefken, D. 2012. Molecular identification of decay fungi in the wood of urban trees. Eur J For Res 131: 885-891.

Schmidt, O.; Kallow, W. 2005. Differentiation of indoor wood decay fungi with MALDI-TOF mass spectrometry. Holzforschung 59: 74–377.

Staden, R. 1996. The Staden sequence analysis package. Mol Biotechnol 5:233.

Stalpers, J.A. 1978. Identification of wood-inhabiting aphyllophorales in pure culture. Stud Mycol 16. CBS-KNAW Fungal Biodiversity Centre, Barn.

Stewart, J.E.; Kim, M.S.; Klopfenstein, N.B. 2018. Molecular genetic approaches toward understanding forest-associated fungi and their interactive roles within forest ecosystems. Curr Forestry Rep 4: 72.

Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30: 2725–2729.

Terho, M.; Hantula, J.; Hallaksela, A.M. 2007. Occurrence and decay patterns of common wood-decay fungi in hazardous trees felled in the Helsinki City. For Pathol 37(6): 420-432.

Vigrow, A.; Palfreyman, J.W.; King, B. 1991. On the identity of certain isolates of Serpula lacrymans. Holzforschung 45:153–154.

White, T.J.; Bruns, T.; Lee, S.; Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications. Innis, M.A; Gelfand, D.H; Sninsky, J.J; White, T.J. (eds). San Diego, California, Academic Press, United States. pp 315–322.

Young, R.J. 1982. Introduction to Forest Science. John Wiley & sons.




How to Cite

Bari, E. ., Karimi, K. ., Aghajani, H. ., Schmidt, O. ., Zaheri, S. ., Ali Tajick-Ghanbary, M. ., & Ziaie Juybari, H. . (2021). Characterizations of tree-decay fungi by molecular and morphological investigationsin aniranian alamdardeh forest . Maderas-Cienc Tecnol, 23, 1–12. Retrieved from