Application of a strain gauge to assess drying stresses in normal and tension wood of corymbia citriodora


  • José Yony Cricel Sima Sánchez
  • José Tarcísio Lima
  • José Reinaldo Moreira da Silva
  • Bruno Charles Dias Soares



Casehardening, drying strain, kiln drying, lumber industry, reaction wood


The quantitative evaluation of longitudinal drying strain can provide relevant information for the processing wood and lumber industry, especially with regard to reaction wood in Corymbia, since little has been published. The objective of this work was to evaluate the effect of the steam conditioning and the cooling on the longitudinal drying strain (LDS) obtained from a strain gauge, called extensometer, in boards of both normal and tension wood of Corymbia citriodora. Lumbers 30 mm thick were produced and kiln dried at the initial temperature of 40 °C, final temperature of 65 °C and drying potential of 2,1. The LDS were measured before and after steam conditioning on hot and cold lumbers. It was observed that the conditioning did not reduce the LDS. Hot lumbers showed higher LDS values than the cold lumbers. The LDS values measured in normal, tension and opposite woods were statistically similar, indicating that the type of wood was not an influential factor in the appearance of longitudinal drying stresses. Extensometer proved to be feasible for measuring LDS, allowing its easy and quick quantification.


Download data is not yet available.


Abreu Jr, Á.A.; Xavier, C.N.; Sánchez, J.Y.C.S.; Souza, P.P; Assis, J.A.; Andrade, A.C.A.; Lima, J.T. 2017. Deformações residuais longitudinais em árvores de Corymbia citriodora propensas à formação de lenho de tração. In Anais III Congresso Brasileiro de Ciência e Tecnologia da Madeira. Florianópolis, SC, Brazil.

Allegretti, O.; Ferrari, S. 2008. A sensor for direct measurement of internal stress in wood during drying: experimental tests toward industrial application. Drying Technol 26(9): 1150–1154.

ABNT. 2003. NBR 11941: Madeira - determinação da densidade básica. ABNT: Rio de Janeiro, RJ, Brazil.

Badia, M.A.; Mothe, F.; Constant, T.; Nepveu, G. 2005. Assessment of tension wood detection based on shiny appearance for three poplar cultivars. Ann For Sci 62(1): 43–49.

Bodig, J.; Jayne, B.A. 1982. Mechanics of wood and wood composites. VN Reinhold: New York, USA.

Cai, L.; Oliveira, L.C. 2008. Impact of high-temperature schedules on drying of spruce and Pine. Drying Technol 26(9): 1160–1164.

Carvalho, A.M.; Gonçalves, M.D.P.M.; Amparado, K.D.F.; Latorraca, J.V.D.F.; Garcia, R.A. 2010. Correlações da altura e diâmetro com tensões de crescimento em árvores de Corymbia citriodora e Eucalyptus urophylla. Rev Árvore 34(2): 323–331.

Diawanich, P.; Matan, N.; Kyokong, B. 2010. Evolution of internal stress during drying, cooling and conditioning of rubberwood lumber. Eur J Wood Prod 68(1): 1–12.

European Committee for Standardization. 2010. ENV 14464: Sawn timber-method for assessment of case-hardening. CEN standard Stockholm, Sweden.

Groenli, M.G. 1996. A theoretical and experimental study of the thermal degradation of biomass. Ph.D. Thesis, Norwegian University of Science and Technology. Trondheim, Norway.

Jantawee, S.; Leelatanon, S.; Diawanich, P.; Matan, N. 2016. A new assessment of internal stress within kiln-dried lumber using a restoring force technique on a half-split specimen. Wood Sci Technol 50(6): 1277–1292.

Kobayashi, A.S.; Society for Experimental Mechanics (U.S.) 1987. Handbook on experimental mechanics. Prentice-Hall: New Jersey, USA.

Kollmann, F.F.P.; Côté, W.A. 1968. The structure of wood and the wood cell wall. In Principles of wood science and technology I: solid wood. Springer-Verlag: New York, USA.

Kretschmann, D.E. 2010. Wood handbook: wood as an engineering material (General technical report FPL-GTR-190). Chapter 5: Mechanical properties of wood. (Ross, R.J. Ed.) Forest Products Laboratory: Wisconsin, USA.

Lamberts, R.; Dutra, L.; Pereira, F.O.R. 2014. Eficiência energética na arquitetura (3ª Edição). Laboratório de eficiência energética em edificações: São Paulo, Brazil.

Lazarescu, C.; Avramidis, S.; Oliveira, L. 2009. Modeling shrinkage response to tensile stresses in wood drying: I. Shrinkage-moisture interaction in stress-free specimens. Drying Technol 27(11): 1183-1191.

Leelatanon, S.; Jantawee, S.; Vannarat, S.; Matan, N. 2019. Evaluation of the drying stress in industrial kiln-dried boards using a force-based technique. BioResources 14(2): 4403–4412.

Lima, J.T.; Trugilho, P.F.; Rosado, S.C.S.; Cruz, C.R. 2004. Deformações residuais longitudinais decorrentes de tensões de crescimento em eucaliptos e suas associações com outras propriedades. Rev Árvore 28(1): 107–116.

Mcmillen, J.M. 1955. Drying stresses in red oak. Forest Products Journal 5(1): 71-76.

Mcmillen, J.M. 1958. Stresses in wood during drying (Report 1652). Forest Products Laboratory: Wisconsin, USA.

Milić, G.; Kolin, B. 2008. Influence of duration of the conditioning process on the reduction of casehardening level in kiln-dried beech and oak lumber. Drying Technol 26(10): 1225–1231.

Pang, S.; Simpson, I.; Haslett, T. 2001. Cooling and steam conditioning after high-temperature drying of Pinus radiata board: experimental investigation and mathematical modelling. Wood Sci Technol 35(6): 487–502.

Rezende, R.N.; Lima, J.T.; Paula, L.E. de R.; Silva, J.R.M. 2015. Efeito da vaporização na secagem de tábuas de Eucalyptus grandis. Cerne 21(1): 37–43.

Ruelle, J.; Yoshida, M.; Clair, B.; Thibaut, B. 2007. Peculiar tension wood structure in Laetia procera (Poepp.) Eichl. (Flacourtiaceae). Trees 21(3): 345–355.

Sánchez, J.Y.C.S.; Lima, J.T.; Silva, J.R.M.; Silva, C.H. 2017. Extensometria aplicada à medição da deformação residual longitudinal em tábuas verdes de Corymbia citriodora. In Anais III Congresso Brasileiro em Ciência e Tecnologia da Madeira. Florianópolis, SC, Brazil.

Siau, J.F. 1984. Transport processes in wood. Springer-Verlag: New York, USA.

Silva, M.R.; Machado, G.D.O.; Deiner, J.; Calil Junior, C. 2010. Permeability measuremens of brazilian Eucalyptus. Mat Res 13(3): 281–286.

Simpson, W.T. 1991. Dry kiln operator’s manual. Forest Products Laboratory: Wisconsin, USA.

Tarmian, A.; Perré, P. 2009. Air permeability in longitudinal and radial directions of compression wood of Picea abies L. and tension wood of Fagus sylvatica L. Holzforschung 63(3): 352–356.

Tarmian, A.; Sepeher, A.; Rahimi, S. 2009. Drying stress and strain in tension wood: A conventional kiln schedule to efficiently dry mixed tension/normal wood boards in poplar. Drying Technol 27(10): 1033–1040.

Thunman, H.; Leckner, B. 2002. Thermal conductivity of wood: Models for different stages of combustion. Biomass Bioenerg 23(1): 47-54.

Tiemann, H.D. 1942. Wood Technology. Pitman Publishing Corporation: New York, USA.

Tomad, J.; Jantawee, S.; Preechatiwong, W.; Matan, N. 2018. Within-tree variability of internal stress generated during drying of rubberwood lumber. Eur J Wood Prod 76(1): 113–122.

Trugilho, P.F.; Rosado, S.C.S.; Lima, J.T.; Pádua, FA.; Souza, M.A.M. 2007. Deformação Residual Longitudinal (DRL) e sua relação com as características de crescimento da árvore em clones de Eucalyptus. Cerne 13(2): 130–137.:

Wengert, E.M. 1992. Techniques for equalizing and conditioning lumber. Forestry Facts 65: 1–6.




How to Cite

Cricel Sima Sánchez, J. Y. ., Tarcísio Lima, J. ., Moreira da Silva, J. R. ., & Dias Soares, B. C. . (2022). Application of a strain gauge to assess drying stresses in normal and tension wood of corymbia citriodora. Maderas-Cienc Tecnol, 24, 1–10.




Most read articles by the same author(s)