Changes in the content and composition of the extractives in thermally modified tropical hardwoods

Authors

  • Bruno Esteves
  • Umit Ayata
  • Luísa Cruz-Lopes
  • Isabel Brás
  • José Ferreira
  • Idalina Domingos

DOI:

https://doi.org/10.4067/s0718-221x2022000100422

Keywords:

Afrormosia, chemical changes, duka, extractives, heat treatment, Pericopsis elata, Tapirira guianensis

Abstract

Chemical composition of wood is known to change during thermal treatments. Two species grown in Turkey, afrormosia (Pericopsis elata) and duka (Tapirira guianensis) were heat treated according to Thermowood® method. Lignin, cellulose, hemicelluloses and extractives in dichloromethane, ethanol and water were determined. Wood extracts were analysed by gas chromatography with mass detection and existing compounds were identified by NIST17 database. Results show that hemicelluloses and cellulose content decreased for both heat-treated woods along the treatment while lignin percentage increased. The analysis of extractives has shown several compounds normally associated to lignin thermal degradation that increased along the treatment. At the same time several compounds associated to carbohydrate thermal degradation were found in all the extracts for both heat-treated woods. These founding have allowed the understanding of the degradation pattern of wood during thermal modification. There was not much difference between afrormosia and duka woods structural compounds behaviour along thermal modification. However, the variation of the amount of extractives along the treatment depended on the species.

Downloads

Download data is not yet available.

References

Aydemir, D.; Gunduz, G.; Altuntas, E.; Ertas, M.; Sahin, H.T.; Alma, M.H. 2011. Investigating changes in the chemical constituents and dimensional stability of heat-treated hornbeam and uludag fir wood. BioResources 6: 1308–1321.https://bioresources.cnr.ncsu.edu/wp-content/uploads/2016/06/BioRes_06_2_1308_Aydemir_GAESA_Changes_Chem_Phys_Heat_Treated_Wood_1479.pdf

Bhuiyan, M.T.R.; Hirai, N.; Sobue, N. 2001. Effect of intermittent heat treatmentthermal modification on crystallinity in wood cellulose. J Wood Sci 47: 336–341. https://doi.org/10.1007/BF00766782

Boonstra, M.J.; Tjeerdsma, B. 2006. Chemical analysis of heat treated softwoods. Holz Roh Werkst 64: 204–211. https://doi.org/10.1007/s00107-005-0078-4

Bourgois, J.; Bartholin, M.-C.; Guyonnet, R. 1989. Thermal treatment of wood: analysis of the obtained product. Wood Sci Technol 23: 303–310. https://doi.org/10.1007/BF00353246

Brosse, N.; El Hage, R.; Chaouch, M.; Pétrissans, M.; Dumarçay, S.; Gérardin, P. 2010. Investigation of the chemical modifications of beech wood lignin during heat treatmentthermal modification. Polym Degrad Stab 95: 1721–1726. https://doi.org/10.1016/j.polymdegradstab.2010.05.018

Ding, T.; Gu, L.; Liu, X. 2011. Influence of steam pressure on chemical changes of heat-treated Mongolian pine wood. BioResources 6, 1880–1889. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_06_2_1880_Ding_GL_Steam_Pressure_Chem_Changes_Pine_Wood

Diouf, P.N.; Stevanovic, T.; Cloutier, A.; Fang, C.-H.; Blanchet, P.; Koubaa, A.; Mariotti, N. 2011. Effects of thermo-hygro-mechanical densification on the surface characteristics of trembling aspen and hybrid poplar wood veneers. Appl Surf Sci 257: 3558–3564. https://doi.org/10.1016/j.apsusc.2010.11.074

Domingos, I.; Ayata, U.; Ferreira, J.; Cruz-Lopes, L.; Sen, A.; Sahin, S.; Esteves, B. 2020. Calorific power improvement of wood by heat treatment: Thermal modification and its relation to chemical composition. Energies 13: 5322. https://doi.org/10/ghrsgt

Dzurenda, L.; Geffert, A.; Geffertova, J.; Dudiak, M. 2020. Evaluation of the process thermal treatment of maple wood saturated water steam in terms of change of pH and color of wood. BioResources 15: 2550–2559. https://doi.org/10/gntgrq

Esteves, B.; Graça, J.; Pereira, H. 2008. Extractive composition and summative chemical analysis of thermally treated eucalypt wood. Holzforschung 62: 344–351. https://doi.org/10.1515/HF.2008.057

Esteves, B.; Videira, R.; Pereira, H. 2010. Chemistry and ecotoxicity of heat-treated pine wood extractives. Wood Sci Technol: https://doi.org/10.1007/s00226-010-0356-0

Faix, O.; Fortmann, I.; Bremer, J.; Meier, D. 1991. Thermal degradation products of wood. Holz Roh Werkst 49: 213–219. https://doi.org/10.1007/BF02613278

Faix, O.; Meier, D.; Fortmann, I. 1990. Thermal degradation products of wood. A collection of electron-impact (EI) mass spectra of monomeric lignin derived products. Holz Roh Werkst 48: 351–354. https://doi.org/10.1007/BF02639897

Hofmann, T.; Wetzig, M.; Rétfalvi, T.; Sieverts, T.; Bergemann, H.; Niemz, P. 2013. Heat-treatment with the vacuum-press dewatering method: chemical properties of the manufactured wood and the condensation water. Eur J Wood Prod 71: 121–127. https://doi.org/10.1007/s00107-012-0657-0

Kamperidou, V. 2021. Chemical and structural characterization of poplar and black pine wood exposed to short thermal modification. Wood Industry. Drv Ind 72. https://doi.org/10.5552/drvind.2021.2026

Kilic, A.; Niemz, P. 2012. Extractives in some tropical woods. Eur J Wood Prod 70: 79–83. https://doi.org/10/dbjh6w

Liu, Y.; Shen, J.; Zhu, X.-D. 2010. Influence of processing parameters on VOC emission from particleboards. Environ Monit Assess 171: 249–254. https://doi.org/10/c6h3dh

Luijkx, G.C.A.; van Rantwijk, F.; van Bekkum, H.; Antal Jr, M.J. 1995. The role of deoxyhexonic acids in the hydrothermal decarboxylation of carbohydrates. Carbohydr Res 272: 191–202. https://doi.org/10/chbdrk

Masek, A.; Latos-Brozio, M.; Kalużna-Czaplińska, J.; Rosiak, A.; Chrzescijanska, E. 2020. Antioxidant properties of green coffee extract. Forests 11: 557. https://doi.org/10/gh2thh

Moreno, J.; Peinado, R. 2012. Chemical aging. In Enological Chemistry. Elsevier, pp. 375–388. https://doi.org/10.1016/B978-0-12-388438-1.00021-2

Nuopponen, M.; Vuorinen, T.; Jämsä, S.; Viitaniemi, P. 2005. Thermal modifications in softwood studied by FT‐IR and UV resonance Raman spectroscopies. J Wood Chem Technol 24: 13–26. https://doi.org/10.1081/WCT-120035941

Poncsak, S.; Kocaefe, D.; Simard, F.; Pichette, A. 2009. Evolution of extractive composition during thermal treatment of Jack pine. J Wood Chem Technol 29: 251–264. https://doi.org/10.1080/02773810902928582

Sivonen, H.; Maunu, S.L.; Sundholm, F.; Jämsä, S.; Viitaniemi, P. 2002. Magnetic resonance studies of thermally modified wood. Holzforschung 56: 648–654. https://doi.org/10.1515/HF.2002.098

Statistics. 2019. SPSS V26 edition. IBM. https://www.ibm.com/products/spss-statistics

Sundqvist, B.; Karlsson, O.; Westermark, U. 2006. Determination of formic-acid and acetic acid concentrations formed during hydrothermal treatment of birch wood and its relation to colour, strength and hardness. Wood Sci Technol 40: 549–561. https://doi.org/10.1007/s00226-006-0071-z

Technical Association of the Pulp and Paper Industry. 2000. TAPPI UM 250-00: Acid-soluble lignin in wood and pulp. TAPPI Press Atlanta, GA, USA. https://www.tappi.org/publications-standards/standards-methods/standardsonline/

Technical Association of the Pulp and Paper Industry. 2007. TAPPI T204 cm-07: Solvent extractives of wood and pulp. TAPPI Press Atlanta, GA, USA. https://www.tappi.org/publications-standards/standards-methods/standardsonline/

Tjeerdsma, B.F.; Boonstra, M.; Pizzi, A.; Tekely, P.; Militz, H. 1998. Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz Roh Werkst 56: 149–153. https://link.springer.com/content/pdf/10.1007/s001070050287.pdf

Tjeerdsma, B.F.; Militz, H. 2005. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Eur J Wood Prod 63: 102–111. https://doi.org/10.1007/s00107-004-0532-8

Wang, X.; Chen, X.; Xie, X.; Wu, Y.; Zhao, L.; Li, Y.; Wang, S.; 2018. Effects of thermal modification on the physical, chemical and micromechanical properties of Masson pine wood (Pinus massoniana Lamb.). Holzforschung 72: 1063–1070. https://doi.org/10/gfqq4g

Wikberg, H.; Maunu, S.L. 2004. Characterisation of thermally modified hard-and softwoods by 13C CPMAS NMR. Carbohydr Polym 58: 461–466. https://doi.org/10.1016/j.carbpol.2004.08.008.

Windeisen, E.; Strobel, C.; Wegener, G. 2007. Chemical changes during the production of thermo-treated beech wood. Wood Sci Technol 41: 523–536. https://doi.org/10.1007/s00226-007-0146-5

Downloads

Published

2022-01-23

How to Cite

Esteves, B. ., Ayata, U. ., Cruz-Lopes, L. ., Brás, I. ., Ferreira, J. ., & Domingos, I. . (2022). Changes in the content and composition of the extractives in thermally modified tropical hardwoods. Maderas-Cienc Tecnol, 24, 1–14. https://doi.org/10.4067/s0718-221x2022000100422

Issue

Section

Article