Chemical variations in tension wood of poplar tree induced by intermittent bending, fertilizer and hormone treatments


  • Rahmatollah Gorgij
  • Kambiz Pourtahmasi
  • Reza Maali Amiri
  • Ali Abdolkhani
  • Maria Cristina Timar
  • Camelia Coşereanu


Crystallinity, gibberellin, intermittent bending, nitrogen fertilization, poplar, tension wood


Tree growth is influenced by various environmental factors that lead to anatomical, physical and chemical changes in their wood. Reaction wood is one of the tree's reactions that make many restrictions in wood usages. Reaction wood in broadleaf is called tension wood. This study was aimed to stimulate the formation of tension wood in two-year-old seedlings of Populus alba by using intermittent bending, nitrogen fertilization and gibberellin hormone. The application of different treatments increased the content of cellulose compared to the control sample. Meanwhile, the bent specimens had more increase while the straight specimens had no significant difference in the statistical grouping. The content of lignin decreased in all treatments compared to the control sample. The cellulose/lignin ratios obtained from ATR-FTIR (Attenuated Total Reflectance-Fourier Transform Infrared) analysis of wood sawdust and chemical composition measurements were almost close to each other and were higher in the treated samples than in the control. The degree of crystallinity obtained from XRD (X-ray Diffraction) measurements showed that all samples under intermittent bending had a significantly higher degree of crystallinity than the control sample, while this increase was not significant in all straight samples compared to the control sample. In general, it can be concluded that intermittent bending treatment had a greater effect on the stimulation and changes of chemical properties of tension wood in poplar and the application of nitrogen fertilization and gibberellin hormone increased this effect. The formation of gelatinous layer in the innermost part of the intermittent bent seedlings fiber cell wall was visible in light microscope images.


Download data is not yet available.


Andersson-Gunneras, S.; Mellerowicz, E.J.; Love, J.; Segerman, B.; Ohmiya, Y.; Coutinho, P.M.; Nilsson, P.; Henrissat, B.; Moritz, T.; Sundberg, B. 2006. Biosynthesis of cellulose-enriched tension wood in Populus: Global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis. Plant J 45: 144–165.

Bruker. 1997. OPUS Base Package Spectroscopy Software. Bruker Billerica, Massachusetts, USA.

Chang, Sh.; Salmen, L.; Olsson, A.M.; Clair, B. 2014. Deposition and organization of cell wall polymers during maturation of poplar tension wood by FTIR microspectroscopy. Planta 239: 243-254.

Clair, B.; Almeras, T.; Pilate, G.; Jullien, D.; Sugiyama, J.; Riekel, C. 2011. Maturation stress generation in poplar tension wood studied by synchrotron radiation microdiffraction. Plant Physiol 155: 562–570.

Clair, B.; Déjardin, A.; Pilate, G.; Alméras, T. 2018. Is the G-Layer a Tertiary Cell Wall? Front. Plant Sci 9: 623.

Clair, B.; Ruelle, J.; Beauchene, J.; Prévost, M.F.; Fournier, M. 2006. Tension wood and opposite wood in 21 tropical rainforest species. IAWA J 27(3): 329 – 338.

Foston, M.; Hubbell, C.A.; Samuel, R.; Jung, S.; Fan, H.; Ding, S.Y.; Zeng, Y.; Jawdy, S.; Davis, M.; Sykes, R.; Gjersing, E.; Tuskan, G.A.; Kalluri, U.; Ragauskas, A.J. 2011. Chemical, ultrastructural and supramolecular analysis of tension wood in Populus tremula x alba as a model substrate for reduced recalcitrance. Energy Environ Sci 4(12): 4962-4971.

Fujita, M.; Saiki, H.; Harada, H. 1974. Electron microscopy of microtubules and cellulose microfibrils in secondary wall formation of poplar tension wood. Mokuzai Gakkaishi 20(4): 147–156.

Funada, R.; Miura, T.; Shimizu, Y.; Kinase, T.; Nakaba, S.; Kubo, T.; Sano, Y. 2008. Gibberellin-induced formation of tension wood in angiospermae trees. Planta 227: 1409–1414.

Gärtner, H.; Schweingruber, FH. 2013. Microscopic preparation techniques for plant stem analysis. Verlag Dr. Kessel. Remagen-Oberwinter, 78 p.

Ghislain, B.; Clair, B. 2017. Diversity in the organisation and lignification of tension wood fibre walls - a review. IAWA J 38(2): 245–265.

Gorshkova, T.; Brutch, N.; Chabbert, B.; Deyholos, M.; Hayashi, T.; LevYadun, S.; Mellerowicz, E.J.; Morvan, C.; Neutelings, G.; Pilate, G. 2012. Plant fiber formation: State of the art, recent and expected progress, and open questions. Crit Rev Plant Sci 31(3): 201–228.

Gorshkova, T.; Chernova, T.; Mokshina, N.; Ageeva, M.; Mikshina, P. 2018. Plant ‘muscles’: fibers with a tertiary cell wall. New Phytol 218(1): 66–72.

Groover, A. 2016. Gravitropisms and reaction woods of forest trees – evolution, functions and mechanisms. New Phytol 211(3): 790-802.

Hellgren, J.M.; Olofsson, K.; Sundberg, B. 2004. Patterns of auxin distribution during gravitational induction of reaction wood in poplar and pine. Plant Physiol 135: 212–220.

Higaki, A.; Yoshinaga, A.; and Takabe, K. 2017. Heterogeneous distribution of xylan and lignin in tension wood G-layers of the S1+G type in several Japanese hardwoods. Tree Physiol 37(12): 1767–1775.

International Business Machines Corporation. 2020. Statistical Package for the Social Science (SPSS) 21.0. IBM. North America 590 Madison Avenue New York, NY 10022 United States.

Jourez, B.A.; Riboux & Leclercq, A. 2001. Anatomical characteristics of tension wood and opposite wood in young inclined stem of poplar (Populus euramericana cv’ ghoy). IAWA J 22(2): 133-157.

Luo, Z.B.; Langenfeld-Heyser, R.; Calfapietra, C.; Polle, A. 2005. Influence of free air CO2 enrichment (EUROFACE) and nitrogen fertilization on the anatomy of juvenile wood of three poplar species after coppicing. Trees 19: 109-118.

Mellerowicz, E.J.; Baucher, M.; Sundberg, B.; Boerjan, W. 2001. Unravelling cell wall formation in the woody dicot stem. Plant Mol Biol 47(1-2): 239–274.

Mellerowicz, E.J.; Gorshkova, T.A. 2012. Tensional stress generation in gelatinous fibers: a review and possible mechanism based on cell-wall structure and composition. J Exp Bot 63(2): 551–565.

Novaes, E.; Osorio, L.; Drost, D.R.; Miles, B.L.; Boaventura-Novaes, C.R.D.; Benedict, C.; Dervinis, C.; Yu, Q.; Sykes, R.; Davis, M.; Martin, T.A.; Peter, G.F.; Kirst, M. 2009. Quantitative genetic analysis of biomass and wood chemistry of Populus under different nitrogen levels. New Phytol 182(4): 878–890.

Park, S.; Baker, J.O.; Himmel, M.E.; Parilla, P.A.; Johnson, D.K. 2010. Crystallinity index: measurement techniques and their impact on interpreting cellulose performance. Biotechnol Biofuels 3:10.

Pitre, F.E.; Cooke, J.E.K.; Mackay, J.J. 2007a. Short-term effects of nitrogen availability on wood formation and fiber properties in hybrid poplar. Trees 21:249-259.

Pitre, F.E.; Lafarguette, F.; Boyle, B.; Pavy, N.; Caron, S.; Dallaire, N.; Poulin, P.; Ouellet, M.; Morency, M.; Wiebe, N.; Ly Lim, E.; Urbain, A.; Mouille, G.; Cooke, J.E.K.; Mackay, J.J. 2010. High nitrogen fertilization and stem leaning have overlapping effects on wood formation in poplar but invoke largely distinct molecular pathways. Tree Physiol 30(10): 1273-1289.

Pitre, F.E.; Pollet, B.; Lafarguette, F.; Cooke, J.E.K.; MacKay, J.J.; Lapierre, C. .2007b. Effects of increased nitrogen supply on the lignification of poplar wood. J Agric Food Chem 55(25): 10306-10314.

Roussel, J.R.; Clair, B. 2015. Evidence of the late lignification of the G-layer in Simarouba tension wood, to assist understanding how non-G-layer species produce tension stress. Tree Physiol 35(12): 1366–1377.

Ruelle, J.; Clair, B.; Rowe, N.; Yamamoto, H. 2009. Occurrence of the gelatinous cell wall layer in tension wood of angiosperms. In Proceedings of the 6th Plant Biomechanics Conference, Cayenne French Guyana. pp. 289–295.

Sawada, D.; Kalluri, U.C.; O’Neill, H.; Urban, V.; Langan, P.; Davison, B.; Pingali, S.V. 2018. Tension wood structure and morphology conducive for better enzymatic digestion. Biotechnol Biofuels 11:44.

Technical Association of the Pulp and Paper Industry. 2007. T 264 cm-07: Preparation of wood for chemical analysis. TAPPI. 15 Technology Parkway South, Suite 115 Peachtree Corners, GA 30092. USA.

Technical Association of the Pulp and Paper Industry. 2015. T 222 om-15: Acid-insoluble lignin in wood and pulp. TAPPI. 15 Technology Parkway South, Suite 115 Peachtree Corners, GA 30092. USA.

Villegas, M.S.; Monteoliva, SE.; Achinelli, F.G.; Felissia, F.; Area, M.C. 2014. Effect of Weed Control and Fertilization on Wood and Chemi-mechanical Pulp Properties of a Populus deltoides Clone. Bioresources 9(1): 801-815.

Washusen, R.; Ades, P.; Evans, R.; Ilic, J.; Vinden, P. 2001. Relationships between density, shrinkage, extractives content and microfibril angle in tension wood from three provenances of 10-year-old Eucalyptus globulus Labill. Holzforschung 55(2): 176–182.




How to Cite

Gorgij, R. ., Pourtahmasi, K. ., Amiri, R. M. ., Abdolkhani, A. ., Timar, M. C. ., & Coşereanu, C. . (2022). Chemical variations in tension wood of poplar tree induced by intermittent bending, fertilizer and hormone treatments. Maderas-Cienc Tecnol, 24. Retrieved from