Modeling and simulation of an industrial indirect solar dryer for Iroko wood (Chlorophora excelsa) in a tropical environment

Authors

  • Merlin Simo-Tagne
  • André Zoulalian
  • Romain Remond
  • Yann Rogaume
  • Beguidé Bonoma

Keywords:

Drying curves, numerical simulation, solar greenhouse dryer, tropical climate, tropical woods.

Abstract

This paper presents a modeling of an instrumental indirect solar wood dryer less expensive functioning in a Cameroonian climate applied to the climate of Yaoundé. The dryer is easy to build and electric energy is only used for the fan. Applications are done on Iroko wood (Chlorophora excelsa), a tropical wood 50mm thick most utilized in Africa. A satisfactory agreement between experimental and numerical results was found. Influences of thickness, wood initial water content and airflow rate were studied.

Downloads

Download data is not yet available.

References

Afungchui, D.; Neba-Ngwa, R. 2013. Global solar radiation of some regions of Cameroon using the linear Angstrom and non-linear polynomial relations (part I) model development. International Journal of Renewable Energy Research 3(4):984-992.

Alvear, M.; Broche, W.; Salinas, C.; Ananias, R.A. 2003. Drying kinetic of Chilean coigüe: Study of the global drying coefficient. 8th International IUFRO Wood Drying Conference: 383-387.

Ananías, R.A.; Chrusciel, L.; Zoulalian, A.; Salinas-Lira, C.; Mougel, E. 2011. Overall mass transfer coefficient for wood drying curves predictions. Mass Transfer in Multiphase Systems and its Applications. [on line] Prof. Mohamed El-Amin (Ed.), ISBN: 978-953-307-215-9, InTech. Available from: <http://www.intechopen.com/books/mass-transfer-in-multiphase-systems-and-its-applications/overall-masstransfer-coefficient-for-wood-drying-curves-predictions>

Ananías, R.A.; Mougel, E.; Zoulalian, A. 2009. Introducing an overall mass-transfer coefficient for prediction of drying curves at low temperature drying rates. Wood Science and Technology 43(1):43-56.

Awadalla, H.S.F.; El-Dib, A.F.; Mohamad, M.A.; Reuss, M.; Hussein, H.M.S. 2004. Mathematical modelling and experimental verification of wood drying process. Energy Conversion and Management (45):197-207.

Ayangma, F.; Nkeng, G.E. ; Bonoma, D.B.; Nganhou, J. 2008. Evaluation du potentiel en énergie solaire au Cameroun : Cas du Nord Cameroun. African Journal of Science and Technology, Science and Engineering series 9(2):32-40.

Bauer, K. 2003. Development and optimization of a low temperature drying schedule for Eucalyptus grandis (Hill) ex maiden in a solar assisted timber dryer. Ph.D. Thesis, Institut für Agrartechnik in den Tropen und Subtropen, Universität Hohenheim, Germany.

Bekkioui, N. 2009. Séchage solaire du bois: modélisation simplifiée du séchage solaire d’une pile de bois dans un séchoir solaire à parois vitrées. Ph.D.Thesis, University of Mohammed V-AGDAL,Morocco.

Bekkioui, N.; Hakam, A.; Zoulalian, A.; Sesbou, A.; Kortbi, M.E. 2011. Solar drying of pin lumber: Verification of a mathematical model. Maderas. Ciencia y Tecnologia 13(1):29-40.

Bekkioui, N.; Zoulalian, A.; Hakam, A.; Bentayeb, F.; Sesbou, F. 2009. Modelling of a solar wood dryer with glazed walls. Maderas. Ciencia y Tecnologia 11(3): 191-205.

Benlahmidi, S. 2013. Etude du séchage convectif par l’énergie solaire des produits rouges. Ph.D.Thesis. University of Mohamed Khider-Biskra. Algeria.

Bentayeb, F.; Bekkioui, N.; Camacho, E. F. 2008b. Simulation of a solar dryer functioning in a Moroccan climate. VI Minsk International Seminar. Heat Pipes, Heat Pumps, Refrigerators : 214-219.

Bentayeb, F.; Bekkioui, N.; Zeghmati, B. 2008a. Modelling and simulation of a wood solar dryer in a Moroccan climate. Renewable Energy (33):501-506.

Chrusciel, L.; Mougel, E.; Zoulalian, A.; Meunier, T. 1999. Characterisation of water transfer in a low temperature convective wood drier: influence of the operating parameters on the mass transfer coefficient. Holz Roh Werkstoff (57):439-445.

Clark, J.A.; Korybalski, M.E. 1974. Algebraic methods for the calculation of radiation exchange in an enclosure. Warme-und Stoffubertragung 7:31-44.

Galilée, L.P. 2005. L’air humide Cours de climatisation, (Chapter 1). BTS Cours FEE 1ère Année. Gérard, J.; Kouassi, A.E.; Daigremont, C.; Détienne, P.; Fouquet, D.; Vernay, M. 1998.

Synthèse sur les caractéristiques technologiques de référence des principaux bois commerciaux africains. Série FORAFRI, Document 11, CF, CIRAD, CIFOR.

Gonçalves, E. 2005. Résolution numérique, discrétisation des EDP et EDO. Institut National Polytechnique de Grenoble.

Jannot, Y. 2011. Thermique solaire. Cours de transfert thermique.

Jannot, Y.; Kanmogne, A.; Talla, A.; Monkam, L. 2006. Experimental determination and modelling of water desorption isotherms of tropical woods: afzelia, ebony, iroko, moabi and obeche. Holz als Roh-und Werkstoff (64):121-124.

Kameni, N.M.; Tchinda, R.; Orosa, J.A.; Roshan, G. 2014. Study of dioxide carbon concentration and indoor àir quality in some buildings in the equatorial region of Cameroon (Yaoundé). Iranian Journal of Health Sciences 2(2):1-15.

Kemajou, A.; Mba, L.; Pako-Mbou, G. 2012. Energy efficiency in air-conditioned buildings of the tropical humid climate. IJRRAS 11(2):235-240.

Lealea, T.; Tchinda, R. 2013. Estimation of diffuse solar radiation in the South of Cameroon. Journal of Energy Technologies and Policy 3(6):32-42.

Lienhard IV, J.H.; Lienhard V, J.H. 2011. A heat transfer textbook. Fourth edition, Cambridge Massachusetts.

Luna, D.L. 2008. Modélisation et conception préliminaire d’un séchoir solaire pour bois de pin avec stockage d’énergie. Ph.D. Thesis, ENSAM, France.

Luna, D.L.; Nadeau, J.P.; Jannot, Y. 2010. Model and simulation of a solar kiln with energy storage. Renewable Energy 36(11):2533-2542.

Nadeau, J.P.; Puiggali, J.R. 1995. Séchage, des processus physiques aux procédés industriels. Paris, New York, Londres, Tec and Doc.

Njomo, D.; Wald, L. 2006. Solar irradiation retrieval in Cameroon from meteosat satellite imagery using Helio_2 method. ISESCO Science and Technology Vision 2(1):19-24.

Simo-Tagne, M. 2014. Numerical study of heat and mass transfer during the thermal drying of tropical woods. International Journal of Thermal and Environment Engineering 8(2):9-15.

Simo-Tagne, M.; Monkam, L.; Rémond, R.; Zoulalian, A.; Rogaume, Y.; Beguide-Bonoma. 2016. Experimental determination of the global mass transfer coefficient of the tropical woods in order to deduce the drying curves at the lower temperature. International Journal of Thermal and Environment Engineering 12(1):9-14.

Simpson, W.T.; TenWolde, A. 1999. Physical properties and Moisture Relations of Wood. Chapter 3 from Forest Products Laboratory. Wood handbook.

Weiss, W.; Buchinger, J. 2003. Solar drying. AEEE INTEC.

How to Cite

Simo-Tagne, M., Zoulalian, A., Remond, R., Rogaume, Y., & Bonoma, B. (2017). Modeling and simulation of an industrial indirect solar dryer for Iroko wood (Chlorophora excelsa) in a tropical environment. Maderas-Cienc Tecnol, 19(1), 95–112. Retrieved from https://revistas.ubiobio.cl/index.php/MCT/article/view/2666

Issue

Section

Article

Most read articles by the same author(s)