Chemical characterization and FTIR spectroscopy of thermally compressed eucalyptus wood panels

Authors

  • Oktay Gonultas
  • Zeki Candan

Keywords:

Cell wall components, chemical composition, Eucalyptus camaldulensis, thermal modification, wood composites, wood solubility

Abstract

In this study, the change in the chemical properties of the thermally modified eucalyptus (Eucalyptus camaldulensis) wood boards were examined by wet chemical analysis and FTIR spectroscopy. The eucalyptus wood boards were modified with a laboratory type hot-press for four different groups at press pressures of 2 or 4 MPa and temperatures of 150°C or 180°C and compared to untreated control. After this, hot water, 1% NaOH, ethanol-cyclohexane, ethanol, and methanol-water solubility values were determined for the treated samples. In addition, the content of klason lignin, acid soluble lignin, holocellulose, and α-cellulose were investigated. The solubility values (except for the ethanol solubility) increased in the modified wood when compared to the untreated control. A decrease in the content of acid soluble lignin, holocellulose and α-cellulose was observed while the content of klason lignin in the modified wood was increased. According to the FTIR analysis results, significant changes were observed in the spectra of the modified samples. These findings were in agreement with the results of wet chemical analysis.

Downloads

Download data is not yet available.

References

Akgul, M.; Gumuskaya, E.; Korkut, S. 2007. Crystalline structure of heat-treated Scots pine (Pinus sylvestris L.) and Uludağ fir (Abies nordmanniana (Stev.) subsp. bornmuelleriana (Mattf.)) wood. Wood Science and Technology 41 (3): 281-289.

Alen, R., R.; Kotilainen, A.; Zaman. 2002. Thermochemical behavior of Norway spruce (Picea abies) at 180-225C. Wood Science and Technology 36 (2): 163-171.

Ates, S.; Akyildiz, M.H.; Ozdemir, H. 2009. Effects of heat treatment on calabrian pine (Pinus brutia Ten.) wood. BioResources 4 (3): 1032-1043.

Atik, C.; Unsal, O.; Candan, Z. 2013. Colour characteristics of pine wood affected by thermal compressing. Ciência Florestal 23 (2): 475–479.

Balaban, M.; Ucar, G. 2001. Extractives and structural components in wood and bark of endemic oak Quercus vulcanica Boiss. Holzforschung 55 (5): 478-486.

Batista, D.C.; De Muñiz, B.; Ines, G.; Da Silva Oliveira, J.T.; Paes, J.B.; Nisgoski, S. 2016a. Effect of the Brazilian thermal modification process on the chemical composition of Eucalyptus grandis juvenile wood: Part 1: Cell wall polymers and extractives contents. Maderas. Ciencia y tecnología 18 (2): 273-284.

Batista, D.C.; De Muñiz Bolzon, G.I; Da Silva Oliveira, J.T.; Paes, J.B.; Nisgoski, S. 2016b. Effect of the Brazilian thermal modification process on the chemical composition of Eucalyptus grandis juvenile wood: Part 2: Solubility and ash content. Maderas. Ciencia y tecnología 18 (2): 285-292.

Boonstra, M.; Tjeerdsma, B. 2006. Chemical analysis of heat treated softwoods. European Journal of Wood and Wood Products 64 (3): 204–211.

Brito, J.O.; Silva, F.G.; Leao, M.M.; Almeida, G. 2008. Chemical composition changes in eucalyptus and pinus woods submitted to heat treatment. Bioresource Technology 99 (18): 8545–8548.

Burmester, A. 1973. Effect of heat-pressure-treatment of semi-dry wood on its dimensional stability. Holz als Roh-und Werkstoff 31 (6): 237–243.

Cadahía, E.; Conde, E.; Garcia-Vallejo, M.C.; Fernández de Simón, B.; 1997. Tannin composition of Eucalyptus camaldulensis, E. globulus and E. rudis Part I: Wood. Holzforschung 51 (2): 119-124.

Candan, Z.; Hiziroglu, S.; McDonald, A.G. 2010. Surface quality of thermally compressed Douglas fir veneer. Materials and Design 31 (7): 3574–3577.

Candan, Z.; Buyuksari U.; Korkut S.; Unsal, O.; Cakicier, N. 2012. Wettability and surface roughness of thermally modified plywood panels. Industrial Crops and Products 36 (1): 434–436.

Candan, Z.; Korkut, S.; Unsal, O. 2013a. Effect of thermal modification by hot pressing on performance properties of paulownia wood boards. Industrial Crops and Products 45: 461–464.

Candan, Z.; Korkut, S.; Unsal, O. 2013b. Thermally compressed poplar wood (tcw): physical and mechanical properties. Drvna Industrija 64 (2): 107–111.

Dogu, A.D.; Tirak, K.; Candan, Z.; Unsal, O. 2010. Anatomical investigation of thermally compressed wood panels. BioResources 5 (4): 2640–2663.

Dogu, A.D.; Bakir, D.; Tuncer, F.D.; Tirak Hizal, K.; Unsal, O.; Candan, Z. 2016. Microscopic investigation of defects in thermally compressed poplar wood panels. Maderas. Ciencia y tecnología 18 (2): 337–348.

Dogu, A.D.; Tuncer, F.D.; Bakir, D.; Candan, Z. 2017. Characterizing microscopic changes of paulownia wood under thermal compression. BioResources 12 (3): 5279–5295.

Esteves, B.; Marques, A.V.; Domingos, I.; Pereira, H. 2013. Chemical changes of heat treated pine and eucalypt wood monitored by FTIR. Maderas. Ciencia y tecnología 15 (2): 245-258.

Fengel, D.; Vegener, G. 1984. Wood Chemistry, Ultrastructure, Reactions. Walter de Gruyter, Berlin / New York.

Giebeler, E. 1983. Dimensional stabilization of wood by moisture-heat-pressure-treatment. Holz als Roh-und Werkstoff 41 (3): 87–94.

Gonultas, O.; Ucar, M.B. 2013. Chemical characteristics of the cone and wood of Pinus pinea. Lignocellulose 2 (1): 262-269.

Hafizoglu H.; Usta M.; Bilgin O. 1997. Wood and bark composition of Picea orientalis (L.) Link. Holzforschung 51 (2): 114–118.

Hill, C. 2006. Wood modification: chemical, thermal and other processes. John Wiley & Sons, West Sussex.

Jayme, G. 1942. Über die Herstellung von Holocellulosen und Zellstoffen mittels Natriumchlorit. Cellulosechemie 20: 43-49.

Kocaefe, D.; Poncsak, S.; Boluk, Y. 2008. Effect of thermal treatment on the chemical composition and mechanical properties of birch and aspen. BioResources 3 (2): 517-537.

Korotkova, E.; Pranovich, A.; Wärnå, J.; Salmi, T.; Murzin, D. Y.; Willför, S. 2015. Lignin isolation from spruce wood with low concentration aqueous alkali at high temperature and pressure: influence of hot-water pre-extraction. Green Chemistry 17 (11): 5058-5068.

Mattos, B.D.; Lourençon, T.V.; Serrano, L.; Labidi, J.; Gatto, D.A. 2015. Chemical modification of fast-growing eucalyptus wood. Wood Science and Technology 2 (49): 273-288.

Militz, H. 2002. Thermal treatment of wood: European processes and their background. In: IRG/WP 02-40241. International Research Group on Wood Protection, Stockholm, Sweden.

Missio, A.L.; Mattos, B.D.; de Cademartori, P.H.; Pertuzzatti, A.; Conte, B.; Gatto, D.A. 2015. Thermochemical and physical properties of two fast-growing eucalypt woods subjected to two-step freeze–heat treatments. Thermochimica Acta 615: 15-22.

Müller, G.; Schopper, C.; Vos, H.; Kharazipour, A.; Polle, A. 2009. FTIR-ATR spectroscopic analyses of changes in wood properties during particle-and fibreboard production of hard-and softwood trees. Bioresources 4 (1): 49-71.

Neiva, D.; Fernandes, L.; Araújo, S.; Lourenço, A.; Gominho, J.; Simões, R.; Pereira, H. 2015. Chemical composition and kraft pulping of 12 eucalypt species. Industrial Crops and Products 66: 89–95.

Peng, W.; Wang, L.; Ohkoshi, M.; Zhang, M. 2015. Separation of hemicelluloses from Eucalyptus species: investigating the residue after alkaline treatment. Cellulose Chemistry and Technology 49 (9-10): 756-764.

Pizzi, A. 1994. Advanced wood adhesives technology. CRC Press, New York.

Rakić, S.; Maletić, R.O.; Perunović, M.N.; Svrzić, G. 2004. Influence of thermal treatment on tannin content and antioxidation effect of oak acorn Quercus cerris extract. Journal of Agricultural Sciences, 49 (1): 97-107.

Runkel, R.O.H.; Wilke, K.D. 1951. Zur Kenntnis des thermo-plastischen verhaltens von. Holz. European Journal of Wood and Wood Products 9 (2): 41-53.

Seborg, R.M.; Millett, M.A.; Stamm, A.J. 1945. Heat-stabilized compressed wood (Staypak). Mechanical Engineering 67 (1): 25–31.

Stamm, A.J. 1964. Wood and Cellulose Science. Ronald Press, New York.

Stamm, A.J.; Haris, E.E. 1953. Chemical Processing of Wood. Chemical Publishing Co., Inc., New York.

Tarkow, H.; Seborg, R.M. 1968. Surface densification of wood. Forest Product Journal. 18 (9): 104–107.

Tappi T-203 cm-99. 1983. Alpha-, Beta- and Gamma-Cellulose in Pulp. TAPPI Test Methods, Tappi Press, Atlanta Georgia.

Tappi UM-250. 1985. Acid-Soluble Lignin in Wood and Pulp. TAPPI Test Methods, Tappi Press, Atlanta.

Tappi T-204 om-88. 1992. Solvent Extractives of Wood and Pulp. TAPPI Test Methods, Tappi Press, Atlanta.

Tappi T-207 om-88. 1992. Water Solubility of Wood and Pulp. TAPPI Test Methods, Tappi Press, Atlanta.

Tappi T-212 om-88. 1992. One percent Sodium Hydroxide Solubility of Wood and Pulp. TAPPI Test Methods, Tappi Press, Atlanta.

Tappi T-257 cm-85. 1992. Sampling and Preparing Wood for Analysis. TAPPI Test Methods, Tappi Press, Atlanta.

Tjeerdsma B.F.; Boonstra M,; Pizzi A,; Tekely P,; Militz H. 1998. Characterisation of thermally modified wood: molecular reasons for wood performance improvement. European Journal of Wood and Wood Products 56 (3): 149–153

Tjeerdsma, B.F.; Militz, H. 2005. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. European Journal of Wood and Wood Products 63 (2): 102-111.

Unsal, O.; Candan, Z.; 2007. Effects of press pressure and temperature on the moisture content, vertical density profile and Janka hardness of pine wood panels. In: Proceedings of 10th International IUFRO Division–5, Wood Drying Conference, Orono, ME, USA, August, 26–30, 92-97.

Unsal, O.; Candan, Z.; 2008. Moisture content, vertical density profile and Janka hardness of thermally compressed pine wood panels as a function of press pressure and temperature. Drying Technology 26 (9): 1165–1169.

Unsal, O.; Kartal, S.N.; Candan, Z.; Arango, R.A.; Clausen, C.A.; Green, F.; 2008. Preliminary investigation of biological resistance, water absorption and swelling of thermally compressed pine wood panels. In: IRG/WP 39th Annual Meeting, Istanbul, Turkey, May 25–29,11p.

Unsal, O.; Kartal, S.N.; Candan, Z.; Arango, R.A.; Clausen, C.A.; Green, F. 2009. Decay and termite resistance, water absorption and swelling of thermally compressed wood panels. International Biodeterioration & Biodegradation 63 (5): 548–552.

Unsal, O.; Candan, Z.; Korkut, S. 2011. Wettability and roughness characteristics of modified wood boards using a hot-press. Industrial Crops and Products 34 (3): 1455-1457.

Wang, J.; Cooper, P.A. 2004. Vertical density profiles in thermally compressed balsam fir wood. Forest Products Journal 55 (5): 65–68.

Wang, J.; Cooper, P.A. 2005. Effect of grain orientation and surface wetting on vertical density profiles of thermally compressed fir and spruce. European Journal of Wood and Wood Products 63 (6): 397–402.

Wanxi, P.; Lansheng, W.; Dongli, L.; Liwen, S.; Yueping, T. 2015. Molecular Characteristics of Pharmacology Woody Extracts of Eucalyptus camaldulensis Biomass. Wood Research 60 (6): 891-898.

Windeisen, E.; Strobel, C.; Wegener, G.; 2007. Chemical changes during the production of thermo-treated beech wood. Wood Science and Technology 41 (6): 523-536.

Wise, L.E. Murphy, M. d'Addieco, A.A. 1946. Chlorite Holocellulose, its Fractionation and Beaning on Summative Wood Analysis and Studies on the Hemicellulose. Paper Trade Journal 122 (2): 35-43.

Yildiz, S.; Gümüşkaya, E. 2007. The effects of thermal modification on crystalline structure of cellulose in soft and hardwood. Building and Environment 42 (1): 62-67.

Downloads

Published

2018-07-01

How to Cite

Gonultas, O., & Candan, Z. (2018). Chemical characterization and FTIR spectroscopy of thermally compressed eucalyptus wood panels. Maderas-Cienc Tecnol, 20(3), 431–442. Retrieved from https://revistas.ubiobio.cl/index.php/MCT/article/view/3150

Issue

Section

Article