Influence of combined heat treatment and densification on mechanical properties of poplar wood

Authors

  • Gonca Düzkale Sözbir
  • İbrahim Bektaş
  • Ayşenur Kılıç Ak

Keywords:

Poplar wood, Densification, Heat treatment, Mechanical properties

Abstract

In this study, influence of combined heat treatment and densification on mechanical properties of poplar wood (Populus usbekistanica) such as density, EMC, compression strength, modulus of elasticy, modulus of rupture and static bending strength were investigated. Poplar samples were subjected to a temperature of 120oC, 160oC and 200oC for 1 and 3h. After the heat treatment, the heat treated samples were compressed in a hot press at a temperature of 120oC, press pressure of 50 bar and press time of 30 minutes for densification. The results showed that the heat treatment affected the densification with increasing density. Additionally, the heat treatment decreased modulus of rupture (MOR), modulus of elasticity (MOE) and impact bending strength (IBS) with increasing temperature for undensified poplar wood. In conclusion, densification process has improved all the mechanical tested properties.

Downloads

Download data is not yet available.

References

AYDEMIR, D. 2007. The effect of heat treatment on some physical, mechanic and technological properties of Uludag Fir (Abies bornmülleriana Mattf.) and Hornnbeam (Carpinus betulus L.) wood. Master Thesis, Zonguldak Karaelmas University, Zonguldak, Turkey.

BAL, B.C.; EFE, F.T. 2016. Isıl işlemin kayın (Fagus orientalis L.) odununun şok direnci üzerine etkilerinin incelenmesi. 1st International Conference on Engineering Technology and Applied Sciences Afyon Kocatepe University, 21-22 April 2016.

BEKHTA, P.; NIEMZ, P. 2003. Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzorschung 57(5): 539-546.

BEKTAS, I.; DUZKALE SOZBİR, G.; BAL, B.C.; ALTUNTAS, E. 2017. Effects of the thermal and thermally compressed modification treatments on chemical properties of the poplar woods. KSU Journal of Engineering Sciences 20(1): 31-37. DOI: 10.17780/ksujes.287672

BOONSTRA, M.; VAN ACKER, J.; TJEERDSMA, B.; KEGEL, E. 2007a. Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Ann Forest Sci 64:679-690.

BOONSTRA, M.; VAN ACKER, J.; KEGEL, E. 2007b. The effects of a two-stage heat treatment process on the mechanical properties of full construction timber. Wood Mater Sci Eng 2(3-4):138-146.

BOURGOIS, J.; GUYONNET, R. 1988. Characterisation and analysis of torrefied wood. Wood Science and Technology 22:143-155.

BOURGOIS, J.; BARTHOLIN, M.C.; GUYENNET, R. 1998. Thermal treatment of wood: Analysis of the obtained product. Wood Science and Technology 23(4): 303-310.

BURMESTER, A. 1973. Investigations on the dimensional stabilization of wood. Bundesanstalt für Materialprüfung, Berlin-Dahlem, 50-56.

CAO, Y.; LU, J.; HUANG, R.; ZHAO, X.; JIANG, J. 2012. Effect of steam-heat treatment on mechanical properties of chinese fir. BioResources 7(1): 1123-1133.

DUNDAR, T.; BUYUKSARI, U.; AVCI, E.; AKKILIC, H. 2012. Effect of heat treament on the physical and mechanical properties of compression and opposite wood of Black Pine. BioResources 7(4): 5009-5018.

ESTEVES, B.; PEREIRA, H. 2009. Wood modification by heat treatment: A review. Bioresources 4(1): 370-404.

FANG, C.H.; MARIOTTI, N.; CLOUTIER, A. et al. 2012. Densification of wood veneers by compression combined with heat and steam. European Journal of Wood and Wood Products 70: 155-163. https://doi.org/10.1007/s00107-011-0524-4

GUNDUZ, G.; KORKUT, S.; KORKUT, D.S. 2007. The effects of heat treatment on physical and technological properties and surface roughness of Camiyani Black Pine (Pinus nigra Arn. subsp. pallasiana var. pallasiana) wood. Bioresource Technology 99:2275-2280. https://doi.org/10.1016/j.biortech.2007.05.015

GUNDUZ, G.; KORKUT, S.; AYDEMİR, D.; BEKAR, I. 2009. The density, compression strength and surface hardness of heat treated hornbeam (Carpinus betulus L.) wood. Maderas-Cienc Tecnol 11(1): 61-70. http://dx.doi.org/10.4067/S0718-221X2009000100005

HILL, C. 2006. Wood modification-chemical, thermal and other processes. Wiley Series in Renewable Resources, John Wiley & Sons, Ltd.

JAMSA, S.; VIITANIEMI, P. 2001. Heat treatment of wood- Better durability without chemicals. Proceedings of special seminar held in Antibes, France.

JIANG, J.; LU, J.; HUANG, R.; LI, X. 2009. Effects of time and temperature on the viscoelastic properties of Chinese fir wood. Drying Technology 27(11): 1229-1234. https://doi.org/10.1080/07373930903266726

KAMDEM, D.P.; PIZZI, A.; JERMANNAUD, A. 2002. Durability of heat-treated wood. European Journal of Wood and Wood Products 60(1): 1-6.

KARIZ, M.; KUZMAN, M.K.; SERNEK, M.; HUGHES, M.; RAUTKARI, L.; KAMKE, F.A.; KUTNAR, A. 2017. Influence of temperature of thermal treatment on surface densification of spruce. European Journal of Wood and Wood Products 75(1): 113-123. https://doi.org/10.1007/s00107-016-1052-z

KARTAL, S.N.; HWANG, W.J.; IMAMURA, Y. 2007. Water absorption of boron-treated and heat-modified wood. Journal of Wood Science 53(5): 454-457. https://doi.org/10.1007/s10086-007-0877-9

KOL, H.S. 2010. Characteristics of heat-treated Turkish pine and fir wood after ThermoWood processing. Journal of Environmental Biology 31(6): 1007-1011.

KOLLMANN, F. 1936. Technologie des Holzes und der Holzwerkstoffe. Springer Verlag, Berlin.

KOLLMANN, F.; SCHNEIDER, A. 1963. On the sorption behaviour of heat stabilized wood. Holz Roh-Werkst. 21(3):77-85.

KORKUT, S.; AKGUL, M.; DUNDAR, T. 2008. The effect of heat treatment on some technological properties of scots pine (Pinus sylvestris L.) wood. Bioresource Technology 99(6): 1861-1868. https://doi.org/10.1016/j.biortech.2007.03.038

KORKUT, S.; BEKTAS, I. 2008. The effects of heat treatment on physical properties of Uludag fir (Abies bornmuelleriana Mattf.) and Scots pine (Pinus sylvestris L.) wood. Forest Products Journal 58(3): 95-99.

KORKUT, S.; HIZIROGLU, S. 2009. Effect of heat treatment on mechanical properties of hazelnut wood (Corylus colurna L.). Materials & Design 30(5): 1853-1858. https://doi.org/10.1016/j.matdes.2008.07.009

KUTNAR, A.; WIDMANN, R.; KAMKE, F.A. 2012. Density, mechanical properties, and morphology of densified wood in relation to compression temperature and steam environments. Proceedings of the Sixth European Conference on Wood Modification, Ljubljana, Slovenia, 167-174.

MANRIQUEZ, M.J.; MORAES, P.D. 2010. Influence of the temperature on the compression strength parallel to grain of paricá. Constr Build Mater 24:99–104.

NAVI, P.; SANDBERG, D. 2012. Thermo-hydro-mechanical wood processing. CRC Press.

PERCIN, O.; PEKER, H.; ATILGAN, A. 2016. The effect of heat treatment on the some physical and mechanical properties of beech (Fagus orientalis L.) wood. Wood Research 61(3): 443-456.

PONCSAK, S.; KOCAEFE, D.; BOUAZARA, M.; PICHETTE, A. 2006. Effect of high temperature treatment on the mechanical properties of birch (Betula papyrifera), Wood Science and Technology 40(8): 647-663. https://doi.org/10.1007/s00226-006-0082-9

SEBORG, R.; MILLET, M.; STAMM, A. 1945. Heat-stabilized compressed wood. Staypack. Mech Eng 67:25-31.

SEBORG, R.; TARKOW, H.; STAMM, A. 1953. Effect of heat upon the dimensional stabilisation of wood. Forest Prod Journal 3(9):59-67.

SHI, J.L.; KOCAEFE, D.; ZHANG, J. 2007. Mechanical behaviour of quebec wood species heat-treated using Thermo wood process. European Journal of Wood and Wood Products 65(4): 255-259.

SULZBERGER, P. H. 1955. The effect of temperature on the strength of wood, plywood and glued joints (Doctoral dissertation, University of Tasmania), p:7.

TIEMANN, H. 1920. Effect of different methods of drying on the strength and hygroscopicity of wood. 3rd Ed. The kiln drying of lumber, Chap. 11, J. P. Lippincott Co.

TS 2595. 1977. Wood-determination of ultimate stress in compression parallel to grain, TSE, Ankara.

TS 2474. 1976. Wood-determination of ultimate strength in static bending, TSE, Ankara.

TS 2478. 1976. Wood-determination of modulus of elasticity in static bending, TSE, Ankara.

TS 2477. 1976. Wood-determination of impact bending strength; Turkish Standart Institute, Ankara Turkey.

ULKER, O.; IMIRZI, O.; BURDURLU, E. 2012. The effect of densification temperature on some physical and mechanical properties of scots pine (Pinus sylvestris L.). Bioresources 7(4): 5581-5592.

YAPICI, F.; ESEN, R.; YORUR, H.; LIKOS, E. 2013. The effects of heat treatment on the modulus of rupture and modulus of elasticity of scots pine (Pinus Sylvestris L.) wood. NWSA-Technological Applied Sciences 2A0078 8(1): 1-6.

ZHONG, Y., REN, H. Q., JIANG, Z. H. 2016. Effects of temperature on the compressive strength parallel to the grain of bamboo scrimbe. Materials 9(6):436.

Downloads

Published

2019-10-01

How to Cite

Düzkale Sözbir, G., Bektaş, İbrahim, & Kılıç Ak, A. (2019). Influence of combined heat treatment and densification on mechanical properties of poplar wood. Maderas-Cienc Tecnol, 21(4), 481–492. Retrieved from https://revistas.ubiobio.cl/index.php/MCT/article/view/3649

Issue

Section

Article