Evaluation of the variability of compressive strength parallel to the fibers of hardwood species
Keywords:
Aspidosperma polyneuron, compression tests, Caryocar villosum, Goupia glabra, Hymenaea spp, Paratecoma peroba, Tabebuia serratifolia, Vochysia sppAbstract
Wood has several advantages as structural material. For this use to be applied in a safe way, it is necessary to know the statistical behavior of the mechanical properties. Some works and normative codes, such as the “Brazilian timber standard” (as well as its review project), accepts a normal distribution model for determining the characteristic value of compressive strength parallel to wood fiber, with the adoption of a coefficient of variation for this property equal to 18 %. This work evaluates the distribution model of compressive strength parallel to the fibers, as well as the coefficient of variation of this property. Tests and statistical treatment were performed in compression parallel to the fibers for 7 species of hardwood commonly found in Brazil. It was observed that the compressive strength of wood actually follows a normal distribution, and the adoption of an average coefficient of variation equal to 18 % is acceptable and in favor of safety.
Downloads
References
Aquino, V.B. de M.; Almeida, J.P.B.; Almeida, D.H.; Almeida, T.H.; Panzera, T.H.; Christoforo, A.L.; Lahr, F.A.R. 2018. Physical and Mechanical Characterization of Copaifera sp. Wood Specie. Int J Mater Eng 8(3): 55-58. https://doi.org/10.5923/j.ijme.20180803.03 Associação Brasileira de Normas Técnicas. ABNT. 1997. NBR 7190: Projetos de estruturas de madeiras. ABNT. Rio de Janeiro, Brazil.
Associação Brasileira de Normas Técnicas. ABNT. 2013a. PNBR 02:126.10-001-1 Madeiras – Método de Ensaio de caracterização de corpos de prova isentos de defeitos para madeiras tropicais. Projeto de Revisão, ABNT. Rio de Janeiro, Brazil.
Associação Brasileira de Normas Técnicas. ABNT. 2013b. PNBR 7190: Projeto de Estruturas de Madeira. Projeto de Revisão. Rio de Janeiro, Brazil.
Couto, N.G.; Aquino, V.B. de M.; Almeida, J.P.B.; Almeida, D.H.; Christoforo, A.L.; Lahr, F.A.R. 2018. Determination of Physical and Mechanical Properties of Wood Specie Dinizia excelsa Ducke. Int J Mater Eng 8(6): 158-161. https://doi.org/10.5923/j.ijme.20180806.04
Espinosa, M.M.; Calil Junior, C.; Lahr, F.A.R. 2004.Parametric and non-parametric methods to determine the characteristic value in wood tests results. Sci For 66: 76-83. (in portuguese). https://www.ipef.br/publicacoes/scientia/nr66/cap07.pdf
European Committee for Standardization. CEN. 2016. UNE-EN 14358: Timber Structures – Determination and verification of characteristic values. AENOR, Madrid, Spain. (in spanish).
Ferreira, D.F. 2011. Sisvar: a computer statistical analysis system. Cienc Agrotec 35(6): 1039-1042. http://dx.doi.org/10.1590/S1413-70542011000600001
Kretschmann, D.E. 2010. Mechanical Properties of Wood. In Wood Handbook: Wood as an engineering material (Chapter 5: 5.1–5.46.) Department of Agriculture, Forest Service, Forest Products Laboratory, WI, USA. https://www.fpl.fs.fed.us/documnts/fplgtr/fpl_gtr190.pdf
Gherardi Hein, P.R.; Tarcísio Lima, J. 2012. Relationships between microfibril angle, modulus of elasticity and compressive strength in Eucalyptus wood. Maderas-Cienc Tecnol 14(3): 267-274. http://dx.doi.org/10.4067/S0718-221X2012005000002
Koman, S.; Feher, S.; Vityi, A. 2017. Physical and mechanical properties of paulownia tomentosa wood planted in Hungaria. Wood Res 62(2): 335-340. http://www.woodresearch.sk/wr/201702/15.pdf
Lima, T.F.P.; Almeida, T.H.; Almeida, D.H.; Christoforo, A.L.; Lahr, F.A.R. 2018. Physical and mechanical properties of Tatajuba wood specie (Bagassa guianensis) from two different Brazilian regions. Matéria (Rio J.) 23(3): e12185. (in portuguese) http://dx.doi.org/10.1590/s1517-707620180003.0519
Lima Junior, M.P.; Biazzon, J.C.; Araujo, V.A.; Munis, R.A.; Martins, J.C.; Cortez-Barbosa, J.; Gava, M.; Valarelli, I.D.; Morales, E.A.M. 2018. Mechanical Properties Evaluation of Eucalyptus grandis Wood at Three Different Heights by Impulse Excitation Technique (IET). Bioresources 13(2): 3377-3385. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_13_2_3377_Lima_Mechanical_Properties_Evaluation_Eucalyptus
Logsdon, N.B.; Jesus, M.H.; Penna, J.E. 2010. Evaluation of the estimators of the characteristic strength to compression parallel to the grain. Sci For 38(88): 579-587. (in portuguese) https://www.ipef.br/publicacoes/scientia/nr88/cap04.pdf
Pinto, E.M.; Espinosa, M.M.; Calil Junior, C. 2004. Methods for determining the characteristic value of the compression resistance parallel to the wood fibers. Madeira: Arquitetura e Engenharia 5(14): 1-6. (in portuguese) http://madeira.set.eesc.usp.br/article/view/264
Shapiro, S.S.; Wilk, M.B. 1965. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 52(3/4): 591-611. https://doi.org/10.2307/2333709
Silva, C.E.G.; Almeida, D.H.; Almeida, T.H.; Chahud, E.; Branco, L.A.M.N.; Campos, C.I.; Lahr, F.A.R.; Christoforo, A.L. 2018. Influence of procurement site on physical and mechanical properties of Cupiúba Wood Species. Bioresources 13(2): 4118-4131.
https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_13_2_4118_daSilva_Procurement_Physical_Mechanical_Properties_Cupiuba
Torman, V.B.L; Coster, R.; Riboldi, J. 2012. Normality of variables: diagnosis methods and comparison of some nonparametric tests by simulation. Rev HCPA 32(2): 227-234. (in portuguese) https://seer.ufrgs.br/hcpa/article/view/29874/19186.
Zeidler, A.; Salem, M.Z.M.; Boruvka, V. 2014. Mechanical properties of grand fir wood grown in the Czech Republic in vertical and horizontal positions. Bioresources 10(1): 793-808. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_10_1_783_Zeidler_Properties_Grand_Fir_Wood