Carbon fiber-reinforced polymers as a tensile reinforcement of the Pinus elliotti and Manilkara huberi wood species

Authors

  • Cintia Grazielle Alves dos Santos Bravo
  • Luiz Antonio Melgaço Nunes Branco
  • Eduardo Chahud
  • Vinicius Borges de Moura Aquino
  • Alfredo Manuel Pereira Geraldes Dias
  • Andre Luis Christoforo
  • Francisco Antonio Rocco Lahr

Keywords:

Damaged structures, laminated composites, reinforcement, repair, tension strength parallel

Abstract

In wood structures, the elements subjected to bending stresses, such as the beams, present a fracture initiated in the tensile region, and under these conditions, the use of laminated composite materials is presented as an alternative solution in the form of repair or reinforcement. This research aimed to evaluate the influence of the use of carbon fibers laminated composites in tensile reinforcement in the direction parallel to grain of Pinus elliotti and Manilkara huberi wood species. The Viapol two-component epoxy adhesive was used in the lamination and fixation of the unidirectional carbon fiber in the wood species. Ten specimens with no defects (reference) and 10 specimens were prepared for each crack length (25 and 50mm) with and without the reinforcement (60mm × 50mm) by the laminated composite. The tensile tests were performed in accordance with the requirements of the Brazilian standard ABNT NBR 7190 (1997). From the results of the statistical analysis, the use of the carbon fiber composite was able to restore the tensile strength of the cracked samples (partial or total) in relation to samples without defects, demonstrating the potential of the laminates in carbon fibers as an alternative solution in repair for both wood species.

Downloads

Download data is not yet available.

References

Aquino, V. B. M; Almeida, J. P. B; Almeida, D. H.; Almeida, T. H.; Panzera, T. H.; Christoforo, A. L.; Lahr, F. A. R. 2018. Physical and mechanical characterization of Copaifera sp. wood specie. International Journal of Materials Engineering 8(3). 55-58.

Associação Brasileira de Normas Técnicas - ABNT. 1997. NBR 7190 - Projeto de Estruturas de Madeira. Rio de Janeiro.

Beech, E.; Rivers, M.; Oldfield, S.; Smith, P. P. 2017. Global tree search: the first complete global database of tree species and country distributions. Journal of Sustainable Forestry 36(5): 454-489.

Bertolini, M. S.; Almeida, D. H.; Icimoto, F. H.; Ferro, F. S.; Christoforo, A. L.; Lahr, F. A. R. 2014. Emprego de resina epóxi em vigas danificadas de madeira de Pinus elliottii. Ambiente Construído 14: 121-129.

Biscaia, H. C.; Chastre, C.; Cruz, D.; Franco, N. 2017. Flexural strengthening of old timber floors with laminated carbon fiber–reinforced polymers. Journal of Composites for Construction 21(1): 04016073.

Buligon, E. A; Haselein, C. R.; Gatto, D. A.; Santini, E. J., Rauber. R.; Berger, C. 2015. Propriedades físico-mecânicas de painéis de lâminas paralelas reforçados com PRFV. Ciência Florestal 25(3): 731-741.

Carvalho, A. L. C.; Leila, F. M.; Dias, A. M. S.; Christoforo, A. L.; Silva, D. A. L.; Silveira, M. E.; Rocco, F. A. L. 2016. Numerical Analyses of Timber Columns Reinforced by Particulate Composite Material. The Open Construction and Building Technology Journal 10: 442-449.

Christoforo, A. L.; Panzera, T. H.; Araujo, V. A.; Fiorelli, J.; Lahr, F. A. R. 2017. Timber beam repair based on polymer-cementitious blends. Engenharia Agrícola 37: 366-375.

Dadzie, P. K.; Amoah, M. 2015. Density, some anatomical properties and natural durability of stem and branch wood of two tropical hardwood species for ground applications. European Journal of Wood and Wood Products 73(6): 759-773.

Dias, F. M.; Lahr, F. A. R. 2004. Estimativa de propriedades de resistência e de rigidez da madeira através da densidade aparente. Scientia Forestalis 65:102-113.

Fernando, D.; Frangi, A.; Kobel, P. 2016. Behaviour of basalt fibre reinforced polymer strengthened timber laminates under tensile loading. Engineering Structures 117: 437-456.

Ferreira, M. B.; Correa, G. F.; Panzera, T. H.; Fiorelli, J.; Silva, V. R. V.; Rocco, F. A. L.; Christoforo, A. L. 2014. Numerical and Experimental Evaluation of the Use of a Glass Fiber Laminated Composite Materials as Reinforcement in Timber Beams. International Journal of Composite Materials 4: 73-82.

Fiorelli, J.; Dias, A. A. 2003. Analysis of the strength and stiffness of timber beams reinforced with carbon fiber and glass fiber. Materials Research, São Carlos, 6: 193-202.

Fiorelli, J.; Dias, A. A. 2005. Avaliação da delaminação em peças de madeira laminada colada reforçadas com fibra de vidro. Matéria (UFRJ), Rio de Janeiro, v. 10(2): 241-249.

Franke, S.; Franke, B.; Harte, A. M. 2015. Failure modes and reinforcement techniques for timber beams – State of the art. Construction and Building Materials, 97: 2-13.

Garcia, P. R.; Escamilla, A. C.; Garcia, M. N. G. 2013. Bending reinforcement of timber beams with composite carbon fiber and basalt fiber materials. Composites Part B 55 : 528-536.

Grazide, C.; Cointe, A.; Coureau, J-L.; Morel, S.; Dumail, J-F. 2015. Wood heterogeneities and failure load of timber structural elements: a statistical approach. Wood Science and Technology.49(2):421-440.

Komariah, R. N.; Hadi, Y. S.; Massijaya, M. Y.; Suryana, J. 2015. Physical-mechanical properties of glued laminated timber made from tropical small-diameter logs grown in Indonesia. Journal of the Korean Wood Science and Technology 43(2): 156–167.

Micelli, F.; Scialpi, V.; La Tegola, A. M. 2005. Flexural reinforcement of glulam timber beams and joints with carbon fiber-reinforced polymer rods. Journal of Composites for Construction 9(4):337-347.

Miotto, J. L.; Dias, A. A. 2006. Vigas mistas de concreto-MLC reforçadas com fibra de vidro. Cadernos de Engenharia de Estruturas 8: 73-76.

Miotto, J. L; Dias, A. A. 2015. Structural efficiency of full-scale timber-concrete composite beams strengthened with fiberglass reinforced polymer. Composite Structures 128: 145-154.

Motta, J. P.; Oliveira, J. T. S.; Braz, R. L.; Duarte, A. P. C.; Alves, R. C. 2014. Caracterização da madeira de quatro espécies florestais. Ciência Rural. 44(12): 2186–2192.

Rescalvo, F. J.; Suarez, E.; Valverde-Palacios, I.; Santiago-Zaragoza, J. M.; Gallego, A. 2018a. Health monitoring of timber beams retrofitted with carbon fiber composites via the acoustic emission technique. Composite Structures 206:392-402.

Rescalvo, F. J.; Valverde-Palacios, I.; Suarez, E.; Gallego, A. 2018b. Experimental and analytical analysis for bending load capacity of old timber beams with defects when reinforced with carbon fiber strips. Composite Structures186: 29-38.

Sales, M. W. R.; Dalfré, G. M.; Sales, J. S.; Rabelo, R. B. 2017. Modelagem computacional do ensaio de tração de madeiras com reforço de laminados resinados de fibras de vidro e carbono. Revista Eletrônica de Educação da Faculdade Araguaia - Renefara 11: 396-410.

Sander, S. C.; Panzera, T. H.; Christoforo, A. L; Fiorelli, J.; Lahr, F. A. R; Teixeira, S. F. R. 2017. Epoxy mortar timber beam upgrading. Internacional Wood Products Journal 1: 1-9.

Downloads

Published

2020-01-01

How to Cite

dos Santos Bravo, C. G. A., Nunes Branco, L. A. M., Chahud, E., de Moura Aquino, V. B., Pereira Geraldes Dias, A. M., Christoforo, A. L., & Rocco Lahr, F. A. (2020). Carbon fiber-reinforced polymers as a tensile reinforcement of the Pinus elliotti and Manilkara huberi wood species. Maderas. Ciencia Y Tecnología, 22(1), 37–44. Retrieved from https://revistas.ubiobio.cl/index.php/MCT/article/view/3829

Issue

Section

Article

Most read articles by the same author(s)