Water flow in different directions in Corymbia citriodora wood
Keywords:
Bound water, free water, moisture content, density, water flow rateAbstract
This study aims to evaluate the free and bound water flows in the different axes of Corymbia citriodora wood during drying. Wood samples were taken from the inner and outer regions of the tree stem from seven-years-old experimental plantations. The blocks were prepared for the water flow to occur in each wood axis and they were dried up to the final moisture content of 12%. Free water (FWFR), bound water (BWFR) and total water (TWFR) flow rates were calculated. The relationship between loss of moisture content and time presented an exponential curve, especially in the radial and tangential wood axes. Water flow in the three wood directions presented higher FWFR than TWFR (which was higher than BWFR). Free water flow was ~10 times higher than adsorbed water flow, considering values for moisture content between ~80% to ~12%. Free water movement in the longitudinal direction of the wood was ~2 times greater than in the radial axis and ~3 times greater than in the tangential axis. Bound water movement in the longitudinal direction of the wood was ~2 times greater than in the transverse direction. Bound water flow in the radial axis of the wood was statistically equal to the one in the tangential axis. The results indicate that the intensity of free and bound water flows changes according to the direction of Corymbia citriodora wood.
Downloads
References
American Society for Testing and Materials D2395-14. 2001. Standard test methods for specific gravity of wood and wood-based materials. West Conshohocken.
Baraúna, E. E. P.; Lima, J. T.; Vieira, R. S.; Silva, J. R. M.;Monteiro, T. C. 2014. Effect of anatomical and chemical structure in the permeability of 'Amapá' wood. Cerne 20: 529-534. https://doi.org/10.1590/01047760201420041501.
Berry, S. L.; Roderick, M. L. 2005. Plant-water relations and the fibre saturation point. New Phytologist 168 (1): 25-37. https://doi.org/10.1111/j.1469-8137.2005.01528.x.
Bramhall, G. 1971. The validity of Darcy’s law in the axial penetration of wood. Wood Science and Technology 5(2): 121-134. https://doi.org/10.1007/BF01134223.
Brito, A. S.; Vidaurre, G. B.; Oliveira, J. T. S.; Missia da Silva, J. G.; Rodrigues, B. P.; Carneiro, A. C. O. 2019. Effect of planting spacing in production and permeability of heartwood and sapwood of Eucalyptus wood. Floram 26(spe1): e20180378.
Cruz, C. R.; Lima, J. T.; Muniz, G. I. B. 2003. Variações dentro das árvores e entre clones das propriedades físicas e mecânicas da madeira de híbridos de Eucalyptus. Scientia Forestalis 64: 33-47.
De Micco, V.; Balzano, A.; Wheeler, E. A.; Baas, P. 2016. Tyloses and gums: a review of structure, function and occurrence of vessel occlusions. IAWA Journal 37 (2): 186-205. https://doi.org/10.1163/22941932-20160130
Eitelberger, J.; Svensson, S.; Hofstetter, K. 2011. Theory of transport processes in wood below the fiber saturation point. Physical background on the microscale and its macroscopic description. Holzforschung 65 (3): 337-342. https://doi.org/10.1515/hf.2011.041.
Engelund, E. T.; Thygesen, L. G.; Svensson, S.; Hill, C. A. S. 2013. A critical discussion of the physics of wood–water interactions. Wood Science and Technology 47: 141–161. https://doi.org/10.1007/s00226-012-0514-7.
Helmling, S.; Olbrich, A.; Heinz, I.; Koch, G. 2018. Atlas of vessel elements - Identification of Asian Timbers. IAWA Journal 39 (3): 249-352. https://doi.org/10.1163/22941932-20180202.
Kollmann, F. P.; Coté, W. A. 1968. Principles of wood science and technology. Springer Verlag, Berlin.
Lopes, D. J. V.; Paes, J. B.; Bobadilha, G. S. 2018. Resistance of Eucalyptus and Corymbia treated woods against three fungal species. BioResources 13 (3): 4964-4972. https://doi.org/10.15376/biores.13.3.4964-4972.
Monteiro, T. C.; Lima, J. T.; Hein, P. R. G.; Silva, J. R. M.; Trugilho, P. F.; Andrade, H. B. 2017. Efeito dos elementos anatômicos da madeira na secagem das toras de Eucalyptus e Corymbia. Scientia Forestalis 45 (115): 493-505. https://doi.org/10.18671/scifor.v45n115.07
Monteiro, T. C.; Lima, J. T.; Silva, J. R. M.; Zanuncio, A. J. V.; Baraúna, E. E. P. 2018. Water flow evaluation in Eucalyptus and Corymbia short logs. Floram 25: e20170659-e20170659.
Mouchot, N.; Thiercelin, F.; Perré, P.; Zoulalian, A. 2006. Characterization of diffusionnal transfers of bound water and water vapor in beech and spruce. Maderas. Ciencia y Tecnología 8 (3): 139-147. https://doi.org/10.4067/S0718-221X2006000300001.
Nascimento, T. M.; Monteiro, T. C.; Baraúna, E. E. P.; Moulin, J. C.; Azevedo, A. M. 2019. Drying influence on the development of cracks in Eucalyptus logs. BioResources 14: 220-233. https://doi.org/10.15376/biores.14.1.220-233.
Panshin, A. J.; De Zeeuw, C. 1980. Textbook of wood technology. 4.ed. New York: McGraw-Hill.
Peres, L. C.; Carneiro, A. C. O.; Figueiró, C. G.; Fialho, L. F.; Gomes, M. F.; Valente, B. M. R. T. 2019. Clonal selection of Corymbia for energy and charcoal production. Advances in Forestry Science 6 (3): 749-753.
R Development Core Team. 2014. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
Redman, A.; Bailleres, H.; Turner, I.; Perré, P. 2016. Characterisation of wood-water relationships and transverse anatomy and their relationship to drying degrade. Wood Science and Technology 50(4): 739-757. https://doi.org/10.1007/s00226-016-0818-0.
Resende, R. T.; Carneiro, A. C. O.; Ferreira, R. A. D. C.; Kuki, K. N.; Teixeira, R. U.; Zaidan, Ú. R.; Santos, R. D.; Leite, H. G.; Resende, M. D. V. 2018. Air-drying of eucalypts logs: genetic variations along time and stem profile. Industrial Crops and Products 124: 316-324. https://doi.org/10.1016/j.indcrop.2018.08.002.
Rezende, R. N.; Lima, J. T.; Paula, L. E. R. E.; Hein, P. R. G.; Silva, J. R. M. 2018. Wood permeability in Eucalyptus grandis and Eucalyptus dunnii. Floram 25(1): e20150228.
Rezende, R. N.; Lima, J. T.; Paula, L. E. R.; Silva, J. R. M. 2015. Efeito da vaporização na secagem de tábuas de Eucalyptus grandis. Cerne 21 (1): 37-43. https://doi.org/10.1590/01047760201521011546.
Siau, J. F. 1971. Flow in wood. Syracuse: Syracuse University Press.
Silva, M. R.; Machado, G. O.; Deiner, L. J.; Calil Jr, C. 2010. Permeability measurements of Brazilian Eucalyptus. Materials Research 13: 281-286. https://doi.org/10.1590/S1516-14392010000300002.
Skaar, C. 1972. Water in wood. Syracuse: Syracuse University Press.
Tanaka, T.; Avramidis, S.; Shida, S. 2010. A preliminary study on ultrasonic treatment effect on transverse wood permeability. Maderas Ciencia y Tecnología 12(1): 3-9. https://doi.org/10.4067/S0718-221X2010000100001.
Thybring, E. E.; Kymäläinen, M.; Rautkari, L. 2018. Experimental techniques for characterising water in wood covering the range from dry to fully water-saturated. Wood Science and Technology 52: 297-329. https://doi.org/10.1007/s00226-017-0977-7.
Zanuncio, A. J. V.; Monteiro, T. C.; Lima, J. T.; Andrade, H. B.; Carvalho, A. G. 2013. Drying biomass for energy use of Eucalyptus urophylla and Corymbia citriodora logs. Bioresources 8 (4): 5159 – 5168.
Zanuncio, A. J. V; Carvalho, A. G.; Silva, L. F.; Lima, J. T.; Trugilho, P. F.; Silva, J. R. M. 2015. Predicting moisture content from basic density and diameter during air drying of Eucalyptus and Corymbia logs. Maderas. Ciencia y Tecnología 17 (2): 335-344. https://doi.org/10.4067/S0718-221X2015005000031.
Zen, L.R.; Monteiro, T.C.; Schaeffer, W.A.; Kaminski, J.M.; Klitzke, R.J. 2019. Secagem ao ar livre da madeira serrada de eucalipto. Journal of Biotechnology and Biodiversity 7(2): 291-298.