Particle image velocimetry technique for analysis of retractibility in woods of Pinus elliottii

Authors

  • Eduardo Hélio de Novais Miranda
  • Rayner Pathele Ferreira
  • Rodrigo Allan Pereira
  • Taiane Oliveira Guedes
  • Fernando Pujaico Rivera

DOI:

https://doi.org/10.4067/s0718-221x2021000100463

Keywords:

drying, image analysis, non-destructive techniques, physical properties, Pinus elliottii

Abstract

The aim of this work was to verify the ability to use the Particle Image Velocimetry technique for measurements of dimensional variations resulting from wood retractability of Pinus elliottii wood, initially saturated and with the surface marked with multiple dots of ink randomly distributed, was used in this work to apply the Particle Image Velocimetry technique. The specimens were dried and images were captured during the process. The images obtained were processed by the Particle Image Velocimetry algorithm and the deformations that occurred were calculated. For comparison, a conventional method (pachymeter) was used to measure the dimensions of the specimen during drying. The variation in dimensions obtained on the surface of the specimens from the Particle Image Velocimetry technique was 2,28 % for the radial direction and 0,20 % for the longitudinal direction of the fibers. With the standardized method, these values ​​were 2,18 % for the radial direction and 0,21 % for longitudinal. The reduction in the average area of ​​the specimens was 3,85 % by the Particle Image Velocimetry technique and 3,77 % by the conventional methodology. It was concluded that the Particle Image Velocimetry technique was able to accurately measure the displacements on the surface of the Pinus elliottii specimens, resulting in values ​​statistically similar to those reached through the use of the conventional measurement method, demonstrating its reliability.

           

Downloads

Download data is not yet available.

References

Acosta, A.P.; Barbosa, K.T.; Schulz, H.R.; Gallio, E.; Gatto D.A. 2019. Compósitos polímero-madeira preparados por polimerização in situ com mma em propriedades físicas de Pinus elliottii. Biofix Sci J 5(1): 80-85. http://dx.doi.org/10.5380/biofix.v5i1.67534

American Society for Testing and Materials. 2014. ASTM D143-94: Standard methods of testing small clear specimens of timber. ASTM. West Conshohocken, PA, USA. https://www.dx.doi.org/10.1520/D0143-14

Associação Brasileira de Normas Técnicas. 1997. ABNT NBR 7190: Projeto de estruturas de madeira. NBR. Rio de Janeiro, RJ, BRA. https://www.abntcatalogo.com.br/norma.aspx?ID=3395

Autodesk. 2019. AutoCAD software version 2019. https://www.autodesk.eu/products/autocad/free-trial

Braga Jr, R.A.; Magalhães, R.R.; Melo, R.P.; Gomes, J.V. 2015. Maps of deformations in a cantilever beam using particle image velocimetry (PIV) and speckle patterns. Rev Esc Minas 68(3): 273-278. http://dx.doi.org/10.1590/0370-44672013680016

Brashaw, B.K.; Bucur, V.; Divos, F.; Goncalves, R.; Lu, J.; Meder, R.; Pellerin, F.R.; Potter, S.; et al. 2009. Nondestructive testing and evaluation of wood: A worldwide research update. Forest Prod J 59(3): 7-14. https://www.fpl.fs.fed.us/documnts/pdf2009/fpl_2009_brashaw001.pdf

Brown, H.P.; Panshin, A.J.; Forsaith, C.C. 1952. Textbook of wood technology. New York: The physical, mechanical. and chemical properties of the commercial woods of the United States. The American forestry series, New York, USA. 780 p. https://www.tib.eu/en/search/id/TIBKAT%3A032725132/Textbook-of-wood-technology-H-P-Brown-A-J-Panshin/

Galvao, A.P.M.; Jankowsky, I.P. 1985. Secagem racional da madeira. Nobel, São Paulo, Brazil. 111p. https://repositorio.usp.br/item/000749711

Guedes, T.O.; Pereira, R.A.; Rivera, F.P.; Silva, J.R.M. 2019. Particle image velocimetry for obtaining the young’s modulus in woods. Cerne 25(2): 240-245. http://www.cerne.ufla.br/site/index.php/CERNE/article/view/2115

Juizo, C.G.F.; Loiola, P.L.; Zen, L.R.; Marchesan, R.; Carvalho, D.E.; Bila, N.F.; Klitzke, R.J. 2015. Variação radial das propriedades físicas da madeira de Pinus patula plantados em Moçambique. J For Res 35(83): 285-292. https://doi.org/10.4336/2015.pfb.35.83.771

Kollmann, F.R.; Coté, W.A. 1968. Principles of Wood science and technology. Springer-Verlag, Berlin, DEU. 592 p. https://www.springer.com/gp/book/9783642879302

Magalhães, R.R.; Braga, R.A.; Barbosa, B.H.G. 2015. Young׳s Modulus evaluation using Particle Image Velocimetry and Finite Element Inverse Analysis. Opt Laser Technol 70(1): 33-37. https://doi.org/10.1016/j.optlaseng.2015.02.005

Pereira, R.A.; Gomes, F.C.; Braga Jr, R.A.; Rivera, F.P. 2018. Analysis of elasticity in woods submitted to the static bending test using the particle image velocimetry (piv) technique. Eng Agricola 38(2): 159-165. http://dx.doi.org/10.1590/1809-4430-eng.agric.v38n2p159-165/2018

Pereira, R.A.; Gomes, F.C.; Braga Jr, R.A.; Rivera, F.P. 2019. Displacement measurement in sawn wood and wood panels beams using the particle image velocimetry. Cerne 25(1): 110-118. https://doi.org/10.1590/01047760201925012619

Souza, T.M.; Contado, W.N.F.E.; Braga, R.A.; Barbosa, C.H.; Lima, T.J. 2014. Non-destructive technology associating PIV and Sunset laser to create wood deformation maps and predict failure. Biosyst Eng 126(1): 109-116. https://doi.org/10.1016/j.biosystemseng.2014.08.004

Downloads

Published

2021-01-01

How to Cite

de Novais Miranda, E. H. ., Pathele Ferreira, R. ., Allan Pereira, R. ., Oliveira Guedes, T. ., & Pujaico Rivera, F. . (2021). Particle image velocimetry technique for analysis of retractibility in woods of Pinus elliottii. Maderas-Cienc Tecnol, 23, 1–8. https://doi.org/10.4067/s0718-221x2021000100463

Issue

Section

Article

Most read articles by the same author(s)