Evaluation of bean residues in the production of agglomerated panels


  • Eduardo Hélio de Novais Miranda
  • Diogo Antonio Correa Gomes
  • Ana Carolina Corrêa Furtini Corrêa Furtini
  • Denisse Concepción Vega Villarruel
  • Carolina Aparecida dos Santos
  • Lourival Marin Mendes
  • José Benedito Guimarães Júnior




Agglomerates, agricultural residues, Pinus oocarpa, sustainability, urea-formaldehyde


This work aimed to evaluate the physical-mechanical properties of Pinus oocarpa wood agglomerated panels produced with different levels (0 %, 25 %, 50 %, 75 % and 100 %) of wood replacement with bean residues. For this purpose, Pinus oocarpa wood and the agricultural residue were reduced into particles and their properties of apparent density, extractives, lignin and ash content of these raw materials were determined. Then, the particles were dried to a 3 % humidity and granulometrically selected to produce panels with a density of 0,60 g/cm3. These particles were bonded using 12 % urea-formaldehyde adhesive, pressed, following normative dimensions (250 mm x 250 mm x 15 mm (width, length, and thickness)), and kept in a climate-controlled environment (20 ºC ± 2 ºC and 65 % ± 5 % RH) until the physical and mechanical tests were carried out. The research results indicated that the particles from bean residues in comparison with Pinus oocarpa wood, presented low density, lignin and holocellulose values, and higher extractives data. Furthermore, regarding the characterization of the panels, there was a trend towards uniformity in the apparent density values, an increase in the properties of compact ratio, water absorption and thickness swelling, and a decrease in their mechanical properties associated with the increase in the by-product addition to the panels. Therefore, new studies are necessary, seeking a larger study and greater knowledge of the addition effects of bean residues in particulate panels, aiming the dissemination of this sustainable process on large scale.


Download data is not yet available.


American National Standards Institute. ANSI. 1999. Mat-formed wood particleboard. ANSI-A-208.1. ANSI. Maryland, MD, United States. https://www.ansi.org/

Associação Brasileira da Indústria de Painéis de Madeira. ABIPA. 2020. Números 2019. ABIPA. Curitiba, Brasil. http://www.abipa.org.br/numeros.php (In Portuguese)

Associação Brasileira de Normas Técnicas. ABNT. 2010. Pasta celulósica e madeira - Determinação de lignina insolúvel em ácido. ABNT NBR 7989. NBR. Rio de Janeiro, RJ, Brazil. https://www.target.com.br/produtos/normas-tecnicas/38176/nbr7989-pasta-celulosica-e-madeira-determinacao-de-lignina-insoluvel-em-acido (In Portuguese)

Associação Brasileira de Normas Técnicas. ABNT. 2017. Papel, cartão, pastas celulósicas e madeira - Determinação do resíduo (cinza) após a incineração a 525 °C. ABNT NBR 13999. NBR. Rio de Janeiro, RJ, Brazil. https://www.abntcatalogo.com.br/norma.aspx?Q=Sk9QYnVFK1JFczVEZFl1ZmU1b3FxMTloZmdBWVRqdFlYODg4Q2xEdkRiND0 (In Portuguese)

Associação Brasileira de Normas Técnicas. ABNT. 2013. Painéis de partículas de média densidade. Parte 1: Terminologia. ABNT NBR 14810-1. NBR. Rio de Janeiro, RJ, Brazil. https://www.abntcatalogo.com.br/norma.aspx?Q=YUorUE1oVll4MnpIVGxHanpFOXRHNUZjYlVCa3dkcFY4a2N0ZVl3ZmZrdz0 (In Portuguese)

Associação Brasileira de Normas Técnicas. ABNT. 2018. Painéis de partículas de média densidade. Parte 2: Requisitos e métodos de ensaio. ABNT NBR 14810-2. NBR. Rio de Janeiro, RJ, Brazil. https://www.abntcatalogo.com.br/norma.aspx?Q=TkdqTkxGVlEzeXBSSHJFTnhHZ1hObnIyemNweWNJK1Vpek5FM3pMMlJaQT0 (In Portuguese)

Associação Brasileira de Normas Técnicas. ABNT. 2010. Madeira - Determinação do material solúvel em etanol-tolueno e em diclorometano e em acetona. ABNT NBR 14853. NBR. Rio de Janeiro, RJ, Brazil. https://www.abntcatalogo.com.br/norma.aspx?Q=MlQ4aDlLUlkxMXpUTGhVdkZWcGh3c1NoR3VnVzE2NVNGTzVSdFJTTGxEYz0 (In Portuguese)

Ayrilmis, N.; Kwon, J.H.; Han, T.H. 2012. Effect of resin type and content on properties of composite particleboard made of a mixture of wood and rice husk. Int J Adhes Adhes 38: 79-83. https://doi.org/10.1016/j.ijadhadh.2012.04.008

Borges, I.O.; Miranda, E.H.N; Brito, F.M.S.; Altafin, N.C.S.; Mendes, L.M.; Guimarães Júnior, J.B. 2022. Potential for use of waste from soybean culture treated with water and sodium hydroxide for production of agglomerated panels. Res Soc Dev 11(2): e29511225762. https://doi.org/10.33448/RSD-V11I2.25762

Bufalino, L.; Protásio, T.P.P.; Couto, A.M.; Nassur, O.A.C.; Sá, V.A.; Trugilho, P.F.; Mendes, L.M. 2012. Chemical and energetic characterization for utilization of thinning and slab wood from Australian red cedar. Pesqui Florest Bras 32(70): 129-137. https://www.doi.org/10.4336/2012.pfb.70.13

Commercial Standard. CS. 1968. Mat formed wood particle board. CS-236-66. CS. Washington, DC, United States. https://www.ansi.org/

Companhia Nacional de Abastecimento. CONAB. 2020. Acompanhamento da Safra Brasileira de Grãos 2020/2021. CONAB. Brasília, Brazil. https://www.conab.gov.br/info-agro/safras (In Portuguese)

ÇöPür, Y.; Güler, C.; Akgül, M.; Taşçıoğlu, C. 2007. Some chemical properties of hazelnut husk and its suitability for particleboard production. Build Environ 42(7): 2568-2572. https://doi.org/10.1016/j.buildenv.2006.07.011

Fuma, R.; Oyaizu, S.; Nukui, Y.; Ngwe, T.; Shinkai, T.; Koike, S.; Kobayashi, Y. 2012. Use of bean husk as an easily digestible fiber source for activating the fibrolytic rumen bacterium Fibrobacter succinogenes and rice straw digestion. Anim Sci J 83(10): 696-703. https://doi.org/10.1111/j.1740-0929.2012.01017.x

Gomes, D.A.C.; Miranda, E.H.N.; Furtini, A.C.C.; Santos, C.A.; Resende, M.D.; Villarruel, D.C.V.; Guimarães Júnior, J.B. 2021. Viability of polypropylene polymer compounds reinforced with bamboo fiber. Rev Bras Eng Biossistemas 15(4): 511-522. https://doi.org/10.18011/bioeng2021v15n4p511-522

Gomes, D.A.C.; Miranda, E.H.N; Resende, F.C.; Villarruel, D.C.V.; Mendes, L.M.; Guimarães Júnior, J.B. 2023. Analysis of the influence of wheat residues on gypsum composites. Innov Infrastruct Solut 8(31). https://doi.org/10.1007/s41062-022-01007-3

Guimarães, B.M.R.; Mendes, L.M.; Tonoli, G.H.D.; Bufalino, L.; Mendes, R.F.; Guimarães Júnior, J.B. 2014. Chemical treatment of banana tree pseudostem particles aiming the production of particleboards. Cienc Agrotecnol 38(1): 43-49. https://doi.org/10.1590/s1413-70542014000100005

Guimarães Júnior, J.B.; Xavier, M.M.; Santos, T.S.; Protásio, T.D.P.; Mendes, R.F.; Mendes, L.M. 2016. Inclusão de resíduo da cultura de sorgo em painéis aglomerados de eucalipto. Pesqui Florest Bras 36(88): 435-442. https://doi.org/10.4336/2016.pfb.36.88.1036 (In Portuguese)

Instituto de Pesquisas Tecnológicas. IPT. 1985. Madeira: o que é e como pode ser processada e utilizada. IPT. São Paulo, Brasil. https://www.ipt.br/ (In Portuguese)

Iwakiri, S.; Trianoski, R. 2020. Painéis de madeira reconstituída. Ajir Gráfica e Editora Ltda. Brazil. (In Portuguese)

Klock, U.; Andrade, A.S. 2013. Química da madeira. Artmed. http://www.madeira.ufpr.br/disciplinasklock/quimicadamadeira/Quimica%20da%20Madeira%202013.pdf (In Portuguese)

Maloney, T.M. 1993. Modern Particleboard & Dry-Process Fiberboard Manufacturing. Backbeat Books. https://www.amazon.com.br/Modern-Particleboard-Dry-Process-Fiberboard-Manufacturing/dp/0879305290

Martins, E.H.; Vilela, A.P.; Mendes, R.F.; Mendes, L.M.; Vaz, L.E.V.D.S.B.; Guimarães Júnior, J. B. 2018. Soybean waste in particleboard production. Cienc Agrotecnol 42(2): 186-194. https://doi.org/10.1590/1413-70542018422015817

Mendes, R.F.; Baleeiro, N.S.; Mendes, L.M.; Scatolino, M.V.; Oliveira, S.L.; Protásio, T.D.P. 2018. Particleboard Panels Produced with Different Radial Positions of Pinus oocarpa Wood. Floresta Amb 25(1). https://doi.org/10.1590/2179-8087.114514

Miranda, E.H.N.; Silva, G.A.; Gomes, D.A.C.; Silveira, M.N.L.; Vitorino, F.C.; Ferreira, S.R. 2022. Efeito de diferentes espécies de madeira e bambu na hidratação de matrizes à base de cimento Portland. Matéria 27(4). https://doi.org/10.1590/1517-7076-RMAT-2022-0194 (In Portuguese)

Miranda, E.H.N; Gomes, D.A.C; Resende, G.M.C.; Guimarães, T.C.; Mendes, L.M.; Guimarães Júnior, J.B. 2023. Evaluation of the influence of the addition of bean residue in gypsum matrices. Clean Techn Environ Policy 25: 93-103. https://doi.org/10.1007/s10098-022-02389-9

Narciso, C.R.P.; Reis, A.H.S.; Mendes, J.F.; Nogueira, N.D.; Mendes, R.F. 2020. Potential for the Use of Coconut Husk in the Production of Medium Density Particleboard. Waste Biomass Valorization 12(3): 1647-1658. https://doi.org/10.1007/s12649-020-01099-x

Neutelings, G. 2011. Lignin variability in plant cell walls: Contribution of new models. Plant Sci 181(4): 379-386. https://doi.org/10.1016/j.plantsci.2011.06.012

Nguyen, T.T.; Bailleres, H.; Redman, A.; Leggate, W.; Vandi, L.J.; Heiztmann, M. 2020. Homogenous particleboard made from whole cotton (Gossypium hirsutum L.) stalk agricultural waste: Optimisation of particle size and influence of cotton residue on performance. Bioresources 15(4): 7730-7748. https://doi.org/10.15376/biores.15.4.7730-7748

Ngwe, T.; Nukui, Y.; Oyaizu, S.; Takamoto, G.; Koike, S.; Ueda, K.; Nakatsuji, H.; Kondo, S.; Kobayashi, Y. 2011. Bean husks as a supplemental fiber for ruminants: Potential use for activation of fibrolytic rumen bacteria to improve main forage digestion. Anim Sci J 83(1): 43-49. https://doi.org/10.1111/j.1740-0929.2011.00916.x

Prasetiyo, K.W.; Zalukhu, L.; Astari, L.; Sudarmanto; Akbar, F.; Hermawan, D. 2020. The potential of using agricultural waste: Corn husk for particleboard raw material. IOP Conf Ser Earth Environ Sci 591(1): 012011. https://doi.org/10.1088/1755-1315/591/1/012011

Santos, C.A.; Furtini, A.C.C.; Villarruel, D.C.V.; Miranda, E.H.N.; Gomes, D.A.C.; Mendes, L.M.; Guimarães Júnior, J.B. 2022. Use of Pinus oocarpa and Coffea arabica wood for the production of oriented particle board (OSB). Res Soc Dev 11(3): e40611326795. https://doi.org/10.33448/RSD-V11I3.26795

Scatolino, M.V.; Costa, A.D.O.; Guimarães Júnior, J.B.; Protásio, T.D.P.; Mendes, R.F.; Mendes, L.M. 2017. Eucalyptus wood and coffee parchment for particleboard production: Physical and mechanical properties. Cienc Agrotecnol 41(2): 139-146. https://doi.org/10.1590/1413-70542017412038616

Soares, S.S.; Guimarães Júnior, J.B.; Mendes, L.M.; Mendes, R.F.; Protásio, T.D.P.; Lisboa, F.N. 2017. Valorização do bagaço de cana-de-açúcar na produção de painéis aglomerados de baixa densidade. Rev Cienc Madeira 8(2): 64-73. https://doi.org/10.12953/2177-6830/rcm.v8n2p64-73

Wong, M.C.; Hendrikse, S. I.; Sherrell, P.C.; Ellis, A.V. 2020. Grapevine waste in sustainable hybrid particleboard production. Waste Management 118: 501–509. https://doi.org/10.1016/j.wasman.2020.09.007




How to Cite

de Novais Miranda, E. H. ., Correa Gomes, D. A. ., Corrêa Furtini, A. C. C. F., Vega Villarruel, D. C. ., Aparecida dos Santos, C. ., Marin Mendes, L. ., & Guimarães Júnior, J. B. . (2023). Evaluation of bean residues in the production of agglomerated panels. Maderas-Cienc Tecnol, 25, 1–10. https://doi.org/10.4067/s0718-221x2023000100432




Most read articles by the same author(s)