Effect of the thermal treatment on the chemical components, sorption, and shrinkage properties of Tectona grandis juvenile wood

Authors

  • Juliana de Oliveira Lopes
  • Claudia B. Cáceres
  • Roger E. Hernández
  • Rosilei A. Garcia

DOI:

https://doi.org/10.4067/s0718-221x2022000100418

Keywords:

Chemical modification, dimensional stability, equilibrium moisture content, shrinkage, teak, Tectona grandis

Abstract

The effect of thermal treatment on the chemical components, equilibrium moisture content (EMC), and shrinkage of teak juvenile wood was studied. Heartwood and sapwood samples were thermally-treated at 180 ºC and 200 ºC. Extractive, Klason lignin, holocellulose, and α-cellulose contents, as well as pH on untreated and thermally-treated woods, were determined. The EMC was reached at five relative humidity (RH) levels using saturated salt solutions: 86 % (KCl), 76 % (NaCl), 58 % (NaBr), 33 % (MgCl2), and 0 % (P2O5). Linear and volumetric shrinkages were calculated for all EMCs. The ratio of sorption (S), coefficient of shrinkage (h), and fiber saturation point (FSP) were also determined. Thermally-treated wood exhibited lower holocellulose and α-cellulose contents than untreated wood and increased acidity due to degradation of the hemicelluloses. The thermal treatment reduced the EMC of heartwood and sapwood. However, sapwood was more sensitive to RH variations than heartwood regardless of the treatment. Thermally-treated woods had higher hygroscopic and dimensional stabilities, and lower FSP than untreated wood. The thermal treatment did not affect radial shrinkage of the heartwood between 33 % and 86 % RH. Heartwood was more sensitive to the effect of the thermal treatment on shrinkage and degradation of cell wall polymers compared to sapwood.

Downloads

Download data is not yet available.

References

American Society for Testing and Materials. 2001. ASTM D-1106-96: Standard test method for acid-insoluble lignin in wood. ASTM. West Conshohocken, PA, USA. https://www.astm.org/DATABASE.CART/HISTORICAL/D1106-96R01.htm

American Society for Testing and Materials. 2001. ASTM D-1105-96: Standard test method for preparation of extractive-free wood. ASTM. West Conshohocken, PA, USA. https://www.astm.org/DATABASE.CART/HISTORICAL/D1105-96R01.htm

Bhat, K.M.; Priya, P.B.; Rugmini, P. 2001. Characterisation of juvenile wood in teak. Wood Sci Technol 34: 517-532. https://doi.org/10.1007/s002260000067

Bellon, K.R.R. 2013. Modificação térmica da madeira de três espécies de florestas plantadas pelo processo VAP HolzSysteme®. M.Sc. Dissertation, Federal University of Paraná, Curitiba, Brazil (in portuguese)

Boonstra, M.J.; Van Acker, J.; Kegel, E.; Stevens, M. 2007. Optimisation of a two-stage heat treatment process: durability aspects. Wood Sci Technol 41(1): 31-57. https://doi.org/10.1007/s00226-006-0087-4

Darmawan, W.; Nandika, D.; Sari, R.K.; Sitompul, A.; Rahayu, I.; Gardner, D. 2015. Juvenile and mature wood characteristics of short and long rotation teak in Java. IAWA 36(4): 428-442. https://doi.org/10.1163/22941932-20150112

Esteves, B.; Videira, R.; Pereira, H. 2011. Chemistry and ecotoxicity of heat-treated pine wood extractives. Wood Sci Technol 45(4): 661-676. https://doi.org/10.1007/s00226-010-0356-0

Flórez, J.B.; Trugilho, P.F., Lima, J.T.; Hein, P.R.G.; Silva, J.R.M. 2014. Characterization of young wood Tectona grandis L. F. planted in Brazil. Madera y Bosques 20(1): 11-20. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-04712014000100002

Food and Agriculture Organization (FAO). 2000. Reforestación y plantaciones forestales. http://www.fao.org/montes/foda/wforcong/PUBLI/PDF/V3S_T12.PDF

Forest Products Laboratory (FPL). 2010. Wood handbook—Wood as an engineering material. Department of Agriculture, Forest Service, Forest Products Laboratory. Madison, WI: U.S. https://www.fpl.fs.fed.us/documnts/fplgtr/fpl_gtr190.pdf

Garcia, R.A.; Lopes, J.O.; Nascimento, A.M.; Latorraca, J.V.F. 2014. Color stability of weathered heat-treated teak wood. Maderas-Cienc Tecnol 16(4): 453-462. https://doi.org/10.4067/S0718-221X2014005000037

Garcia, R.A.; Carvalho, A.M.; Latorraca, J.V.F.; Matos, J.L.M.; Santos, W.A.; Silva, R.F.M. 2012. Nondestructive evaluation of heat-treated Eucalyptus grandis Hill ex Maiden wood using stress wave method. Wood Sci Technol 46(1): 41-52. https://doi.org/10.1007/s00226-010-0387-6

Gašparík, M.; Gaff, M.; Kačík, F.; Sikora, A. 2019. Color and chemical changes in teak (Tectona grandis L. f.) and meranti (Shorea spp.) wood after thermal treatment. BioResources 14(2): 2667-2683. https://doi.org/10.15376/biores.14.2.2667-2683

Geffert, A.; Geffertova, J.; Dudiak, M. 2019. Direct method of measuring the pH value of wood. Forests 10(10): 852. https://doi.org/10.3390/f10100852

Giebeler, E. 1983. Dimensional stabilization of wood by moisture-heat-pressure treatment. Holz Roh Werkst 41(3): 87-94. https://doi.org/10.1007/BF02608498

Hernández, R.E; Pontin, M. 2006. Shrinkage of three tropical hardwoods below and above the fiber saturation point. Wood Fiber Sci 38(3): 474-483.https://wfs.swst.org/index.php/wfs/article/view/1233

Hernández, R.E. 2007a. Moisture sorption properties of hardwoods as affected by their extraneous substances, wood density, and interlocked grain. Wood Fiber Sci 39(1):132-145. https://wfs.swst.org/index.php/wfs/article/view/1008

Hernández, R.E. 2007b. Swelling properties of hardwoods as affected by their extraneous substances, wood density, and interlocked grain. Wood Fiber Sci 39(1):146-158. https://wfs.swst.org/index.php/wfs/article/view/203

International ThermoWood Association. 2003. ThermoWood® Handbook. Helsinki, Finland. https://cfpwoods.com/wp-content/uploads/2020/02/CFP-Woods-Thermowood-Handbook-2020.pdf

Jankowska, A.; Drożdżek, M.; Sarnowski, P.; Horodeński, J. 2017. Effect of extractives on the equilibrium moisture content and shrinkage of selected tropical woods. BioResources 12(1):597-607. https://doi.org/10.15376/biores.12.1.597-607

Kakavas, K.V.; Chavenetidou, M.; Birbilis, D. 2018. Chemical properties of Greek stump chestnut (Castanea sativa Mill.). Nat Prod Chem Res 6(4):1-4. https://www.longdom.org/open-access/chemical-properties-of-greek-stump-chestnut-castanea-sativa-mill-2329-6836-1000331.pdf

Kartikawati, A.; Wahyudi, I.; Pari, G.; Karlinasari, L. 2020. Color and dimensional stability of fast growing teakwood by mild pyrolysis and combination process. IOP Conf. Series: Materials Science and Engineering 935: 012014. https://doi.org/10.1088/1757-899X/935/1/012014

Kim, J.-Y.; Hwang, H.; Oh, S.; Kim, Y.-S.; Kim, U.-J.; Choi, J.W. 2014. Investigation of structural modification and thermal characteristics of lignin after heat treatment. Int J Biol Macromol 66: 57-65. https://doi.org/10.1016/j.ijbiomac.2014.02.013

Kokutse, A.D.; Brancheriau, L.; Chaix, G. 2010. Rapid prediction of shrinkage and fibre saturation point on teak (Tectona grandis) wood based on near-infrared spectroscopy. Ann For Sci 67: 403. https://doi.org/10.1051/forest/2009123

Kokutse, A.D.; Stokes, A.; Baillères, H.; Kokou, K.; Baudasse, C. 2006. Decay resistance of Togolese teak (Tectona grandis L. f.) heartwood and relationship with colour. Trees 20(2): 219-223. https://doi.org/10.1007/s00468-005-0028-0

Kollmann, F.F.P.; Côté, W.A. Jr. 1968. Principles of wood science and technology. I Solid wood. Springer-Verlag. Berlin, Heidelberg, Germany. https://www.springer.com/gp/book/9783642879302

Lelis, R. 1995. Zur Bedeutung der Kerninhaltsstoffe obligatorisch verkernter Nadelbaumarten bei der Herstellung von feuchtebeständigen und biologisch resistenten Holzspanplatten, am Beispiel der Douglasie [Pseudotsuga menziesii (Mirb.) Franco]. Dissertation, Universität Göttingen, Germany. (in German)

Lengowski, E.C. 2011. Efeito da termorretificação nas propriedades anatômicas, físico mecânicas e químicas das madeiras de Pinus taeda, Eucalyptus grandis e Tectona grandis. Monography, Federal University of Paraná, Curitiba, Brazil. (in Portuguese)

Li, M.-Y.; Cheng, S.-C.; Li, D.; Wang, S.-N.; Huang, A.-M.; Sun, S.-Q. 2015. Structural characterization of steam-heat treated Tectona grandis wood analyzed by FT-IR and 2D-IR correlation spectroscopy. Chinese Chem Lett 26: 221-225. https://doi.org/10.1016/j.cclet.2014.11.024

Lopes, J.O. 2012. Uniformity and stability of color of the heat-treated Tectona grandis L. f. wood. Dissertation, Universidade Federal Rural do Rio de Janeiro, Brazil (in Portuguese).

Lopes, J.O.; Garcia, R.A.; Nascimento, A.M.; Latorraca, J.V.F. 2014. Color uniformization of the young teak wood by heat treatment. Rev Árvore 38(3): 561-568. http://www.scielo.br/pdf/rarv/v38n3/v38n3a19.pdf

Lopes, J.O.; Garcia, R.A.; Souza, N.D. 2018. Infrared spectroscopy of the surface of thermally-modified teak juvenile wood. Maderas-Cienc Tecnol 20(4): 737-746. https://doi.org/10.4067/S0718-221X2018005041901

Miranda, I.; Sousa, V.; Pereira, H. 2011. Wood properties of teak (Tectona grandis) from a mature unmanaged stand in East Timor. J Wood Sci 57(3): 171-178. https://doi.org/10.1007/s10086-010-1164-8

Motta, J. P; Oliveira, J. T. S.; Paes, J. B.; Alves, R. C.; Vidaurre Dambroz, G. B. 2013. Natural resistance of Tectona grandis wood in laboratory assay. Ciência Rural 43(8): 1393-1398. http://dx.doi.org/10.1590/S0103- 84782013000800009

de Moura, L.F.; Brito, J.O.; Silva Júnior, F.G. 2012. Effect of thermal treatment on the chemical characteristics of wood from Eucalyptus grandis W. Hill ex Maiden under different atmospheric conditions. Cerne 18(3): 449-455. https://doi.org/10.1590/S0104-77602012000300012

Niamké, F.B.; Amusant, N.; Charpentier, J.-P.; Chaix, G.; Baissac, Y.; Boutahar, N.; Adima, A.A.; Kati-Coulibaly, S.; Jay-Allemand, C. 2011. Relationships between biochemical attributes (non-structural carbohydrates and phenolics) and natural durability against fungi in dry teak wood (Tectona grandis L. f.). Ann Forest Sci 68(1): 201-211. https://doi.org/10.1007/s13595-011-0021-2

Noack, D.; Schwab, E., Bartz, A. 1973. Characteristics for a judgment of the sorption and swelling behavior of wood. Wood Sci Technol 7(3): 218-236. https://link.springer.com/article/10.1007/BF00355552

Passialis, C.; Voulgaridis, E.; Adamopoulos, S.; Matsouka, M. 2008. Extractives, acidity, buffering capacity, ash and inorganic elements of black locust wood and bark of different clones and origin. Holz Roh Werkst 66(6):395-400. https://doi.org/10.1007/s00107-008-0254-4

Priadi, T.; Hiziroglu, S. 2013. Characterization of heat treated wood species. Mater Design 49: 575- 582. https://doi.org/10.1016/j.matdes.2012.12.067

Priadi, T.; Suharjo, A.A.C.; Karlinasari, L. 2019. Dimensional stability and colour change of heat-treated Young teak Wood. Int Wood Prod J 10(3) : 119-125 https://doi.org/10.1080/20426445.2019.1679430

Poubel, D.S.; Garcia, R.A.; Santos, W.A.; Oliveira, G.L.; Abreu, H.S. 2013. Effect of the heat treatment on physical and chemical properties of Pinus caribaea wood. Cerne 19(3): 391-398. http://www.scielo.br/pdf/cerne/v19n3/05.pdf

Skaar, C. 2012. Wood-water relations. Springer Science & Business Media. U.S.A.

Stamm, A. J. 1964. Wood and cellulose science. Ronald Press. New York. U.S.A

Statistic. 2010. Statistic software version 10.0. Statsoft. https://www.statistica.com/en/

Sundqvist, B. 2004. Colour changes and acid formation in wood during heating. Doctoral Thesis, Luleå University of Technology, Skellefteå, Sweden. https://www.diva-portal.org/smash/get/diva2:999349/FULLTEXT01.pdf

Tsukamoto Filho, A.A.; Silva, M.L.; Couto, L.; Müller, M. D. 2003. Economic analysis of a teak plantation submitted to thinning. Rev Árvore 27(4): 487-494. https://doi.org/10.1590/S0100-67622003000400009

Tsoumis, G.T. 1991. Science and technology of wood: structure, properties, utilization. Verlag Kessel. Remagen-Oberwinter, Germany.

Yamamoto, K.; Simatupang, M.H.; Hashim, R. 1998 Caoutchouc in teak wood (Tectona grandis L. f.): formation, location, influence on sunlight irradiation, hydrophobicity and decay resistance. Holz Roh Werkst 56(3): 201-209. https://doi.org/10.1007/s001070050299

Weaver, P.L. 1993. Tectona grandis L. f. Teak. Verbenaceae. Verbena family. USDA Forest Service, International Institute of Tropical Forestry. https://www.fs.fed.us/global/iitf/pubs/sm_iitf064%20%20(18).pdf

Weiland, J.J.; Guyonnet, R. 2003. Study of chemical modifications and fungi degradation of thermally modified wood using DRIFT spectroscopy. Holz Roh Werkst 61(3): 216-220. https://doi.org/10.1007/s00107-003-0364-y

Downloads

Published

2022-01-05

How to Cite

de Oliveira Lopes, J. ., B. Cáceres, C. ., E. Hernández, R. ., & A. Garcia, R. . (2022). Effect of the thermal treatment on the chemical components, sorption, and shrinkage properties of Tectona grandis juvenile wood. Maderas. Ciencia Y Tecnología, 24, 1–16. https://doi.org/10.4067/s0718-221x2022000100418

Issue

Section

Article

Similar Articles

You may also start an advanced similarity search for this article.