Combining artificial neural network and moth-flame optimization algorithm for optimization of ultrasound-assisted and microwave-assisted extraction parameters: Bark of Pinus brutia

Authors

  • Ayşenur Gürgen
  • Başak Atilgan
  • Sibel Yildiz
  • Oktay Gönültaş
  • Sami İmamoğlu

DOI:

https://doi.org/10.4067/s0718-221x2022000100424

Keywords:

Microwave-assisted extraction, modelling, optimization, Pinus brutia, ultrasound-assisted extraction

Abstract

In this study, the extraction parameters of Pinus brutia bark were optimized using a hybrid artificial intelligence technique. Firstly, the bark samples were extracted by ultrasound-assisted extraction and microwave-assisted extraction which are defined as ‘green’ extraction methods at different conditions. The selected extraction parameters for ultrasound-assisted extraction were 0:100; 20:80; 40:60; 80:20 (%) ethanol: water ratios; 40 ºC, 60 °C extraction temperatures and 5 min, 10 min, 15 min, 20 min extraction times and for microwave-assisted extraction were 90, 180, 360, 600, 900 (W) microwave power, 0:100; 20:80; 40:60; 60:40; 80:20 (%) ethanol: water ratios. Then Stiasny number, condensed tannin content and reducing sugar content of all extracts were determined. Next, the prediction models were developed for each studied parameter using Artificial Neural Network. Finally, the extraction parameters were optimized using Moth-Flame Optimization Algorithm. After that optimization process, while the extraction time was the same (5 min), the ethanol: water ratio and extraction temperature values differed for the optimization of all studied assays of ultrasound-assisted extraction. Also, microwave power and ethanol: water ratio variables were found in different values for each assay of microwave-assisted extraction. The results showed that the Artificial Neural Network and Moth-Flame Optimization could be a novel and powerful hybrid approach to optimize the extraction parameters of Pinus brutia barks with saving time, cost, chemical and effort.

Downloads

Download data is not yet available.

References

Aboulhassan, M.; Souabi, S.; Yaacoubi, A.; Baudu, M. 2016. Coagulation efficacy of a tannin coagulant agent compared to metal salts for paint manufacturing wastewater treatment. Desalin Water Treat 57(41): 19199-19205. https://doi.org/10.1080/19443994.2015.1101016

Ali, A.; Lim, X.Y.; Chong, C.H.; Mah, S.H.; Chua, B.L. 2018. Optimization of ultrasound-assisted extraction of natural antioxidants from Piper betle using response surface methodology. LWT-Food Sci Technol 89: 681-688. https://doi.org/10.1016/j.lwt.2017.11.033

Ameer, K.; Shahbaz, H.M.; Kwon, J. H. 2017. Green extraction methods for polyphenols from plant matrices and their byproducts: A review. Compr Rev Food Sc Food Saf 16(2): 295-315. https://doi.org/10.1111/1541-4337.12253

Atılgan, B. 2018. The effect of extraction methods on yield and chemical compound of bark tannin from redpine (Pinus brutia). Master of Science, Bursa Technical University (in Turkish).

Bandopadhyay, J.; Roy, P.K. 2020. Application of hybrid multi-objective moth flame optimization technique for optimal performance of hybrid micro-grid system. Appl Soft Comput 95: 106487. https://doi.org/10.1016/j.asoc.2020.106487

Barbehenn, R.V.; Constabel, C.P. 2011. Tannins in plant–herbivore interactions. Phytochemistry 72(13): 1551-1565. https://doi.org/10.1016/j.phytochem.2011.01.040

Blondeau, D.; St‐Pierre, A.; Bourdeau, N.; Bley, J.; Lajeunesse, A.; Desgagné‐Penix, I. 2020. Antimicrobial activity and chemical composition of white birch (Betula papyrifera Marshall) bark extracts. MicrobiologyOpen 9(1): e00944. https://doi.org/10.1002/mbo3.944

Bouras, M.; Chadni, M.; Barba, F. J.; Grimi, N.; Bals, O.; Vorobiev, E. 2015. Optimization of microwave-assisted extraction of polyphenols from Quercus bark. Ind Crop Prod 77: 590-601. https://doi.org/10.1016/j.indcrop.2015.09.018

Bouterfas, K.; Mehdadi, Z.; Benmansour, D.; Khaled, M.B.; Bouterfas, M.; Latreche, A. 2014. Optimization of extraction conditions of some phenolic compounds from white horehound (Marrubium vulgare L.) leaves. Int J Org Chem 4(5): 292-308. https://doi.org/10.4236/ijoc.2014.45032

Brahim, M.; Gambier, F.; Brosse, N. 2014. Optimization of polyphenols extraction from grape residues in water medium. Ind Crop Prod 52: 18-22. https://doi.org/10.1016/j.indcrop.2013.10.030

Chakraborty, A.; Goswami, D. 2017. Prediction of slope stability using multiple linear regression (MLR) and artificial neural network (ANN). Arab J Geosci 10(17): 385. https://doi.org/10.1007/s12517-017-3167-x

Chen, W.; Huang, Y.; Qi, J.; Tang, M.; Zheng, Y.; Zhao, S.; Chen, L. 2014. Optimization of ultrasound‐assisted extraction of phenolic compounds from areca husk. J Food Process Pres 38(1): 90-96. https://doi.org/10.1111/j.1745-4549.2012.00748.x

Dahmoune, F.; Spigno, G.; Moussi, K.; Remini, H.; Cherbal, A.; Madani, K. 2014. Pistacia lentiscus leaves as a source of phenolic compounds: Microwave-assisted extraction optimized and compared with ultrasound-assisted and conventional solvent extraction. Ind Crop Prod 61: 31-40. https://doi.org/10.1016/j.indcrop.2014.06.035

Diamantopoulou, M.J. 2005. Artificial neural networks as an alternative tool in pine bark volume estimation. Comput Electron Agric 48(3): 235-244. https://doi.org/10.1016/j.compag.2005.04.002

Dróżdż, P.; Pyrzynska, K. 2019. Extracts from pine and oak barks: phenolics, minerals and antioxidant potential. Int J Environ An Ch 99: 1-9. https://doi.org/10.1080/03067319.2019.1668381

Ebrahim, M.A.; Becherif, M.; Abdelaziz, A.Y. 2018. Dynamic performance enhancement for wind energy conversion system using Moth-Flame Optimization based blade pitch controller. Sustain Energy Technol Assess 27: 206-212. https://doi.org/10.1016/j.seta.2018.04.012

Feng, S.; Cheng, S.; Yuan, Z.; Leitch, M.; Xu, C.C. 2013. Valorization of bark for chemicals and materials: A review. Renew Sust Energ Rev 26: 560-578. https://doi.org/10.1016/j.rser.2013.06.024

Fuleki, T.; Francis, F. 1968. Quantitative methods for anthocyanins. 1. Extraction and determination of total anthocyanin in cranberries. J Food Sci 33(1): 72-77. https://doi.org/10.1111/j.1365-2621.1968.tb00887.x

García, D. E.; Glasser, W. G.; Pizzi, A.; Osorio-Madrazo, A.; Laborie, M.-P. 2013. Hydroxypropyl tannin derivatives from Pinus pinaster (Ait.) bark. Ind Crop Prod 49: 730-739. https://doi.org/10.1016/j.indcrop.2013.06.019

Ghitescu, R.E.; Volf, I.; Carausu, C.; Bühlmann, A.-M.; Gilca, I.A.; Popa, V.I. 2015. Optimization of ultrasound-assisted extraction of polyphenols from spruce wood bark. Ultrason Sonochem 22: 535-541. https://doi.org/10.1016/j.ultsonch.2014.07.013

Ghitescu, R.E.; Curteanu, S.; Mihailescu, C.; Volf, I.; Leon, F.; Gilca, A.I.; Popa, V.I. 2017. Support vector machine combined with genetic algorithm for optimization of microwave-assisted extraction of polyphenols from spruce wood bark. Cellulose Chem Technol 51(3-4): 203-213. https://www.cellulosechemtechnol.ro/pdf/CCT3-4(2017)/p.203-213.pdf

Gironi, F.; Piemonte, V. 2011. Temperature and solvent effects on polyphenol extraction process from chestnut tree wood. Chem Eng Res Des 89(7): 857-862. https://doi.org/10.1016/j.cherd.2010.11.003

Govindarajan, V.; Mathew, A. 1965. Anthocyanidins from leucoanthocyanidins. Phytochem 4(6): 985-988. https://doi.org/10.1016/S0031-9422(00)86280-9

Gönültaş, O.; Sarialan, N. 2017. Phenolic composition of bark tannin from Taurus Cedar (Cedrus libani). Kastamonu University Journal of Forest Faculty 17(4): 594-602. https://doi.org/10.17475/kastorman.369041

Gürgen, A.; Topaloğlu, E.; Ustaömer, D.; Yıldız, S.; Ay, N. 2019. Prediction of the colorimetric parameters and mass loss of heat‐treated bamboo: Comparison of multiple linear regression and artificial neural network method. Color Res Appl 44(5): 824-833. https://doi.org/10.1002/col.22393

Hagerman, A.E. 1989. Chemistry of tannin-protein complexation. Chemistry and significance of condensed tannins, Springer: 323-333. https://link.springer.com/chapter/10.1007/978-1-4684-7511-1_20

Hamad, A.M.A.; Ates, S.; Olgun, Ç.; Gur, M. 2019. Chemical composition and antioxidant properties of some ındustrial tree bark extracts. BioResources 14(3): 5657-5671. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_14_3_5657_Hamad_Chemical_Composition_Antioxidant_Properties_Tree_Bark/6914

Kartalopoulos, S.V. (1997). Understanding neural networks and fuzzy logic: basic concepts and applications, Wiley-IEEE Press. https://dl.acm.org/doi/book/10.5555/550087

Kemppainen, K.; Siika-aho, M.; Pattathil, S.; Giovando, S.; Kruus, K. 2014. Spruce bark as an industrial source of condensed tannins and non-cellulosic sugars. Ind Crop Prod 52: 158-168. https://doi.org/10.1016/j.indcrop.2013.10.009

Khanbabaee, K.; van Ree, T. 2001. Tannins: classification and definition. Nat Prod Rep 18(6): 641-649. https://doi.org/10.1039/B101061L

Kumar, V.; Sharma, N.; Sourirajan, A.; Khosla, P.K.; Dev, K. 2018. Comparative evaluation of antimicrobial and antioxidant potential of ethanolic extract and its fractions of bark and leaves of Terminalia arjuna from north-western Himalayas, India. J Tradit Complement Med 8(1): 100-106. https://doi.org/10.1016/j.jtcme.2017.04.002

Lacoste, C.; Basso, M.C.; Pizzi, A.; Celzard, A.; Ebang, E.E.; Gallon, N.; Charrier, B. 2015. Pine (P. pinaster) and quebracho (S. lorentzii) tannin-based foams as green acoustic absorbers. Ind Crop Prod 67: 70-73. https://doi.org/10.1016/j.indcrop.2014.12.018

Lacoste, C.; Basso, M.C.; Pizzi, A.; Laborie, M.P.; Celzard, A.; Fierro, V. 2013. Pine tannin-based rigid foams: Mechanical and thermal properties. Ind Crop Prod 43: 245-250. https://doi.org/10.1016/j.indcrop.2012.07.039

Laks, P.E.; McKaig, P.A.; Hemingway, R.W. 1988. Flavonoid biocides: wood preservatives based on condensed tannins. Holzforschung 42(5): 299-306. https://doi.org/10.1515/hfsg.1988.42.5.299

Li, Y.; Fabiano-Tixier, A.S.; Vian, M.A.; Chemat, F. 2013. Solvent-free microwave extraction of bioactive compounds provides a tool for green analytical chemistry. TrAC Trend Anal Chem 47: 1-11. https://doi.org/10.1016/j.trac.2013.02.007

Mangang, K.C.S.; Chakraborty, S.; Deka, S.C. 2020. Optimized microwave-assisted extraction of bioflavonoids from Albizia myriophylla bark using response surface methodology. J Food Sci Technol 57(6): 2107–2117. https://doi.org/10.1007/s13197-020-04246-3

Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3): 426-428. https://doi.org/10.1021/ac60147a030

Mirjalili, S. 2015. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl-Based Syst 89: 228-249. https://doi.org/10.1016/j.knosys.2015.07.006

Mishra, T.; Arya, R.K.; Meena, S.; Joshi, P.; Pal, M.; Meena, B.; Upreti, D.; Rana, T.; Datta, D. 2016. Isolation, characterization and anticancer potential of cytotoxic triterpenes from Betula utilis bark. PloS one 11(7): e0159430. https://doi.org/10.1371/journal.pone.0159430

Moreira, M.M.; Barroso, M.F.; Boeykens, A.; Withouck, H.; Morais, S.; Delerue-Matos, C. 2017. Valorization of apple tree wood residues by polyphenols extraction: Comparison between conventional and microwave-assisted extraction. Ind Crop Prod 104: 210-220. https://doi.org/10.1016/j.indcrop.2017.04.038

Ndazi, B.; Tesha, J.; Karlsson, S.; Bisanda, E. 2006. Production of rice husks composites with Acacia mimosa tannin-based resin. J Mater Sci 41(21): 6978-6983. https://doi.org/10.1007/s10853-006-0220-7

Nicollin, A.; Zhou, X.; Pizzi, A.; Grigsby, W.; Rode, K.; Delmotte, L. 2013. MALDI-TOF and 13C NMR analysis of a renewable resource additive—Thermoplastic acetylated tannins. Ind Crop Prod 49: 851-857. https://doi.org/10.1016/j.indcrop.2013.06.013

Panamgama, L.A. 2007. Polyphenolic extracts of Pinus radiata bark and networking mechanisms of additive‐accelerated polycondensates. J Appl Polym Sci 103(4): 2487-2493. https://doi.org/10.1002/app.24466

Pohjamo, S.P.; Hemming, J.E.; Willför, S.M.; Reunanen, M.H.; Holmbom, B.R. 2003. Phenolic extractives in Salix caprea wood and knots. Phytochem 63(2): 165-169. https://doi.org/10.1016/S0031-9422(03)00050-5

Rabadeaux, C.; Vallette, L.; Sirdaarta, J.; Davis, C.; Cock, I.E. 2017. An examination of the antimicrobial and anticancer properties of Khaya senegalensis (Desr.) A. Juss. bark extracts. Pharmacogn J 9(4): 504-518. https://doi.org/10.5530/pj.2017.4.82

Rhazi, N.; Hannache, H.; Oumam, M.; Sesbou, A.; Charrier, B.; Pizzi, A.; Charrier-El Bouhtoury, F. 2019. Green extraction process of tannins obtained from Moroccan Acacia mollissima barks by microwave: Modeling and optimization of the process using the response surface methodology RSM. Arab J Chem 12(8): 2668-2684. https://doi.org/10.1016/j.arabjc.2015.04.032

Rowe, J.W.; Conner, A.H. (1979). Extractives in eastern hardwoods: a review, Department of Agriculture, Forest Service, Forest Products Laboratory.

Tang, T.C.; Chi, L.C. 2005. Neural networks analysis in business failure prediction of Chinese importers: A between-countries approach. Expert Syst Appl 29(2): 244-255. https://doi.org/10.1016/j.eswa.2005.03.003

Tiwari, B.K. 2015. Ultrasound: A clean, green extraction technology. TrAC Trend Anal Chem 71: 100-109. https://doi.org/10.1016/j.trac.2015.04.013

Tondi, G.; Pizzi, A. 2009. Tannin-based rigid foams: Characterization and modification. Ind Crop Prod 29(2-3): 356-363. https://doi.org/10.1016/j.indcrop.2008.07.003

Yazaki, Y.; Collins, P. 1994. Wood adhesives based on tannin extracts from barks of some pine and spruce species. Holz Roh Werkst 52(5): 307. https://link.springer.com/content/pdf/10.1007/BF02621420.pdf

Yazaki, Y.; Hillis, W. 1977. Polyphenolic extractives of Pinus radiata bark. Holzforschung 31(1): 20-25. https://doi.org/10.1515/hfsg.1977.31.1.20

Yıldız, B.S.; Yıldız, A.R. 2017. Moth-flame optimization algorithm to determine optimal machining parameters in manufacturing processes. Mater Test 59(5): 425-429. https://doi.org/10.3139/120.111024

Downloads

Published

2022-01-27

How to Cite

Gürgen, A. ., Atilgan, B. ., Yildiz, S. ., Gönültaş, O. ., & İmamoğlu, S. . (2022). Combining artificial neural network and moth-flame optimization algorithm for optimization of ultrasound-assisted and microwave-assisted extraction parameters: Bark of Pinus brutia . Maderas. Ciencia Y Tecnología, 24, 1–18. https://doi.org/10.4067/s0718-221x2022000100424

Issue

Section

Article