Optimization and characterization of wood decay mushroom Ganoderma adspersum extract: A comparison between response surface methodology and artificial neural network-ant lion algorithm

Authors

  • Ayşenur Gürgen Osmaniye Korkut Ata University. Faculty of Engineering and Natural Sciences. Department of Industrial Engineering. Osmaniye, Türkiye. https://orcid.org/0000-0002-2263-7323

DOI:

https://doi.org/10.22320/s0718221x/2025.25

Keywords:

Ant lion algorithm, artificial neural networks, bioactive compounds, extraction optimization, Ganoderma adspersum, optimization

Abstract

In this study, the bioactive properties of Ganoderma adspersum, a wood-decaying mushroom, were investigated. The study was designed in three steps: an experimental study, optimization of extraction conditions, and determination of bioactive properties of the optimum extracts. The main research problem was to determine the most effective extraction conditions to maximize the bioactive potential of G. adspersum using advanced optimization techniques. The extraction conditions were designed according to the I-optimal design and optimized using both the response surface method and the integration of artificial neural networks–ant lion algorithm. In the third step of the study, the bioactive properties of the two estimated extraction conditions and the extraction condition providing the highest total antioxidant status value obtained from the experimental studies were evaluated. Antioxidant activity, total phenolic and flavonoid content, antimicrobial properties, anticholinesterase activity, and phenolic content of three different optimum extracts were determined. As a result, the optimum extraction conditions suggested by artificial neural networks–ant lion algorithm optimization showed the best overall bioactive activity, highlighting the effectiveness of hybrid artificial intelligence-based models in bioactive compound extraction processes.

 

Downloads

Author Biography

Ayşenur Gürgen, Osmaniye Korkut Ata University. Faculty of Engineering and Natural Sciences. Department of Industrial Engineering. Osmaniye, Türkiye.

Biography

References

Abualigah, L.; Shehab, M.; Alshinwan, M.; Mirjalili, S.; Elaziz, M.A.; 2021. Ant lion optimizer: a comprehensive survey of its variants and applications. Archives of Computational Methods in Engineering 28: 1397-1416. https://doi.org/10.1007/s11831-020-09420-6

Ahmad, R.; Riaz, M.; Khan, A.; Aljamea, A.; Algheryafi, M.; Sewaket, D.; Alqathama, A. 2021. Ganoderma lucidum (Reishi) an edible mushroom; a comprehensive and critical review of its nutritional, cosmeceutical, mycochemical, pharmacological, clinical, and toxicological properties. Phytotherapy Research 35(11): 6030-6062. https://doi.org/10.1002/ptr.7215

Ahmad, Z.; Özdemir, B.; Sevindik, M.; Eraslan, E.C.; Selamoglu, Z.; Bal, C. 2023. Phenolic com- pound and antioxidant potential of Hebeloma sinapizans mushroom. AgroLife Scientific Journal 12(2): 12-17. https://doi.org/10.17930/AGL202322

Aquino, M.; Rugolo, M.; Robledo, G.; Kuhar, F. 2022. Evaluation of mycelium composite materials produced by five Patagonian fungal species. Maderas. Ciencia y Tecnología 24. e35. http://dx.doi.org/10.4067/s0718-221x2022000100435

Ayon, N.J. 2023. High-throughput screening of natural product and synthetic molecule libraries for antibacterial drug discovery. Metabolites 13(5). e625. https://doi.org/10.3390/metabo13050625

Baby, S.; Johnson, A.J.; Govindan, B. 2015. Secondary metabolites from Ganoderma. Phytochemistry 114: 66-101. https://doi.org/10.1016/j.phytochem.2015.03.010

Bajaj, D.; Ballal, S. 2021. A review on antioxidant activity of coffee and its additives. Journal of Pharmaceutical Research International 33(25B): 77-85. https://doi.org/10.9734/jpri/2021/v33i25B31464

Bal, C.; Eraslan, E.C.; Sevindik, M. 2023. Antioxidant, antimicrobial activities, total phenolic and element contents of wild edible mushroom Bovista nigrescens. Prospects in Pharmaceutical Sciences 21(2): 37-41. https://doi.org/10.56782/pps.139

Bauer, A.W.; Kirby, W.M.M.; Sherris, J.C.; Turck, M.D. 1966. Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology 45(4_ts): 493-496. https://doi.org/10.1093/ajcp/45.4_ts.493

Bulam, S.; Üstün, N.Ş.; Pekşen, A. 2019. Health benefits of Ganoderma lucidum as a medicinal mushroom. Turkish Journal of Agriculture - Food Science and Technology 7(SP1): 84-93. https://doi.org/10.24925/turjaf.v7isp1.84-93.2728

Chafouz, R.; Karavergou, S.; Tsiftsoglou, O.S.; Maskovic, P.; Lazari, D. 2024. Ganoderma adspersum (Ganodermataceae): investigation of its secondary metabolites and the antioxidant, antimicrobial, and cytotoxic potential of its extracts. International Journal of Molecular Science 25(1). e 516. https://doi.org/10.3390/ijms25010516

Cör Andrejč, D.; Knez, Ž.; Knez Marevci, M. 2022. Antioxidant, antibacterial, antitumor, antifungal, antiviral, anti-inflammatory, and nevro-protective activity of Ganoderma lucidum: An overview. Frontiers in Pharmacology 13. e934982. https://doi.org/10.3389/fphar.2022.934982

Ellman, G.L.; Courtney, K.D.; Andres Jr, V.; Featherstone, R.M. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology 7(2): 88-95. https://doi.org/10.1016/0006-2952(61)90145-9

Erel, O. 2004. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical Biochemistry 37(4): 277-285. https://doi.org/10.1016/j.clinbiochem.2003.11.015

Erel, O. 2005. A new automated colorimetric method for measuring total oxidant status. Clinical Biochemistry 38(12): 1103-1111. https://doi.org/10.1016/j.clinbiochem.2005.08.008

Ferreira, I.C.F.R.; Heleno, S.A.; Reis, F.S.; Stojkovic, D.; Queiroz, M.J.R. P.; Vasconcelos, M.H.; Sokovic, M. 2015. Chemical features of Ganoderma polysaccharides with antioxidant, antitumor and antimicrobial activities. Phytochemistry 114: 38-55. https://doi.org/10.1016/j.phytochem.2014.10.011

Gil-Martín, E.; Forbes-Hernández, T.; Romero, A.; Cianciosi, D.; Giampieri, F.; Battino, M. 2022. Influence of the extraction method on the recovery of bioactive phenolic compounds from food industry by-products. Food Chemistry 378. e131918. https://doi.org/10.1016/j.foodchem.2021.131918

Hindler, J.; Hochstein, L.; Howell, A. 1992. Preparation of routine media and reagents used in antimicrobial sensitivity testing. Clinical microbiology procedures handbook: 1-30. https://doi.org/10.1002/9781683670438.cmph0082

Karaltı, İ.; Eraslan, E.C.; Sarıdoğan, B.G.Ö.; Akata, I.; Sevindik, M. 2022. Total antioxidant, antimicrobial, antiproliferative potentials and element contents of wild mushroom Candolleomyces candolleanus (Agaricomycetes) from Turkey. International Journal of Medicinal Mushrooms 24(12): 69-76. https://doi.org/10.1615/IntJMedMushrooms.2022045389

Khuri, A.I.; Mukhopadhyay, S. 2010. Response surface methodology. Wiley Interdiscip Rev Comput Stat 2(2): 128-149. https://doi.org/10.1002/wics.73

Kormaz, N.; Mohammed, F.S.; Uysal, İ.; Sevindik, M. 2023. Antioxidant, antimicrobial and anticholinesterase activity of Dittrichia graveolens. Prospects in Pharmaceutical Sciences 21(4): 48-53. https://doi.org/10.56782/pps.169

Kumar, A. 2021. Ganoderma lucidum: A traditional chinese medicine used for curing tumors. International Journal of Pharmacy and Pharmaceutical Sciences 13: 1-13. https://dx.doi.org/10.22159/ijpps.2021v13i3.40614

Łysakowska, P.; Sobota, A.; Wirkijowska, A. 2023. Medicinal mushrooms: their bioactive components, nutritional value and application in functional food production-a review. Molecules 28(14). e5393. https://doi.org/10.3390/molecules28145393

Matuschek, E.; Brown, D.F.; Kahlmeter, G. 2014. Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clinical Microbiology and Infection 20(4): O255-O266. https://doi.org/10.1111/1469-0691.12373

Mirjalili, S. 2015. The ant lion optimizer. Advances in Engineering Software 83: 80-98. https://doi.org/10.1016/j.advengsoft.2015.01.010

Mohammed, F.S. 2020. Phenolic contents, antioxidant and antimicrobial activıties of Allium stamineum collected from Duhok (Iraq). Fresenius Environmental Bulletin 29(09): 7526-7531. https://www.cabidigitalli-brary.org/doi/full/10.5555/20210174769

Mohammed, F.S.; Günal, S.; Pehlivan, M.; Doğan, M.; Sevindik, M.; Akgül, H. 2020. Phenolic content, antioxidant and antimicrobial potential of endemic Ferulago platycarpa. Gazi University Journal of Science 33(4): 670-677. https://doi.org/10.35378/gujs.707555

Mohamad, S.F.; Mohd Said, F.; Abdul Munaim, M.S.; Mohamad, S.; Azizi Wan Sulaiman, W.M. 2020. Application of experimental designs and response surface methods in screening and optimization of reverse micellar extraction. Critical Reviews in Biotechnology 40(3): 341-356. https://doi.org/10.1080/07388551.2020.1712321

Peng, G.; Xiong, C.; Zeng, X.; Jin, Y.; Huang, W. 2024. Exploring nutrient profiles, phytochemical composition, and the antiproliferative activity of Ganoderma lucidum and Ganoderma leucocontextum: a comprehensive comparative study. Foods 13(4). e614. https://doi.org/10.3390/foods13040614

Raks, V.; Öztürk, M.; Vasylchenko, O.; Raks, M. 2018. Ganoderma species extracts: Antioxidant activity and chromatography. Biotechnologia Acta 11(3): 69-77. https://doi.org/10.15407/biotech11.03.069

Rašeta, M.; Popović, M.; Beara, I.; Šibul, F.; Zengin, G.; Krstić, S.; Karaman, M. 2021. Anti‐in- flammatory, antioxidant and enzyme inhibition activities in correlation with mycochemical profile of selected indigenous Ganoderma spp. from Balkan region (Serbia). Chem Biodivers 18(2). e2000828. https://doi.org/10.1002/cbdv.202000828

Raut, S.K.; Khullar, M. 2023. Oxidative stress in metabolic diseases: Current scenario and therapeutic relevance. Molecular and Cellular Biochemistry 478(1): 185-196. https://doi.org/10.1007/s11010-022-04496-z

Reitz, C.; Pericak-Vance, M.A.; Foroud, T.; Mayeux, R. 2023. A global view of the genetic basis of Alzheimer disease. Nature Reviews Neurology 19(5): 261-277. https://doi.org/10.1038/s41582-023-00789-z

Schwarze, F.; Ferner, D. 2003. Ganoderma on trees-differentiation of species and studies of invasiveness. Arboricultural Journal 27(1): 59-77. https://doi.org/10.1080/03071375.2003.9747362

Sevindik, M.; Akgul, H.; Selamoglu, Z.; Braidy, N. 2020. Antioxidant and antigenotoxic potential of Infundibulicybe geotropa mushroom collected from Northwestern Turkey. Oxidative Medicine and Cellular Longevity 2020(1). e5620484. https://doi.org/10.1155/2020/5620484

Sevindik, M.; Akgul, H.; Selamoglu, Z.; Braidy, N. 2021. Antioxidant, antimicrobial and neuroprotective effects of Octaviania asterosperma in vitro. Mycology 12(2): 128-138. https://doi.org/10.1080/21501203.2020.1816584

Sevindik, M.; Gürgen, A.; Khassanov, V.T.; Bal, C. 2024. Biological activities of ethanol extracts of Hericium erinaceus obtained as a result of optimization analysis. Foods 13(10). e1560. https://doi.org/10.3390/foods13101560

Sułkowska-Ziaja, K.; Zengin, G.; Gunia-Krzyżak, A.; Popiół, J.; Szewczyk, A.; Jaszek, M.; Ro- galski, J.; Muszyńska, B. 2022. Bioactivity and mycochemical profile of extracts from mycelial cultures of Ganoderma spp. Molecules 27(1). e275. https://doi.org/10.3390/molecules27010275

Świątek, Ł.; Sieniawska, E.; Sinan, K.I.; Maciejewska-Turska, M.; Boguszewska, A.; Polz-Dacewicz, M.; Senkardes, I.; Guler, G.O.; Bibi Sadeer, N.; Mahomoodally, M.F.; Zengin, G. 2021. LC-ESI-QTOF- MS/MS analysis, cytotoxic, antiviral, antioxidant, and enzyme inhibitory properties of four extracts of Gera- nium pyrenaicum Burm. f.: A good gift from the natural treasure. International Journal of Molecular Sciences 22(14). e7621. https://doi.org/10.3390/ijms22147621

Tel-Çayan, G.; Öztürk, M.; Duru, M.E.; Rehman, M.U.; Adhikari, A.; Türkoğlu, A.; Choudhary, M.I. 2015. Phytochemical investigation, antioxidant and anticholinesterase activities of Ganoderma adspersum. Industrial Crops and Products 76: 749-754. https://doi.org/10.1016/j.indcrop.2015.07.042

Vamanu, E.; Dinu, L.D.; Pelinescu, D.R.; Gatea, F. 2021. Therapeutic properties of edible mushrooms and herbal teas in gut microbiota modulation. Microorganisms 9(6). e1262. https://doi.org/10.3390/microorganisms9061262

Waltersmann, L.; Kiemel, S.; Stuhlsatz, J.; Sauer, A.; Miehe, R. 2021. Artificial intelligence applications for increasing resource efficiency in manufacturing companies-a comprehensive review. Sustainability 13(12). e6689. https://doi.org/10.3390/su13126689

Zahmoul, S.H.; Chaabouni, R.L.; Srih, A.; Dogan, H.H.; Varıcıoğlu, E.; Sbissi, I.; Kües, U.; Toumi, L.; Tlili, A.; Peron, G. Louhichi, N.; Trigui, M.; Bouassida, K.Z. 2024. Nutritional and pharmacological po- tentials of the medicinal mushroom Ganoderma adspersum (Schulz.) Donk. South African Journal of Botany 166: 360-374. https://doi.org/10.1016/j.sajb.2024.01.049

Zheng, S.; Zhang, W.; Liu, S. 2020. Optimization of ultrasonic-assisted extraction of polysaccharides and triterpenoids from the medicinal mushroom Ganoderma lucidum and evaluation of their in vitro antioxi- dant capacities. PLoS One 15(12). e0244749. https://doi.org/10.1371/journal.pone.0244749

Downloads

Published

2025-04-14

How to Cite

Gürgen, A. . (2025). Optimization and characterization of wood decay mushroom Ganoderma adspersum extract: A comparison between response surface methodology and artificial neural network-ant lion algorithm. Maderas. Ciencia Y Tecnología, 27, e2525. https://doi.org/10.22320/s0718221x/2025.25

Issue

Section

Article