Characterisation of lignins isolated from bamboo organosolv and kraft black liquor

Authors

  • Nusirat Aderinsola Sadiku
  • Abdulazeez Faruq Yusuph

DOI:

https://doi.org/10.4067/s0718-221x2023000100415

Keywords:

Bamboo, Bambusa vulgaris, filtration capacity, guaiacyl-syringyl units, low molecular, weight lignin, total dissolve solid

Abstract

Bamboo biomass was pulped using organosolv methods: Acetic acid and formic acid; hydrogen peroxide and formic acid; ethanol and water and kraft process with varying concentrations of the cooking chemicals. The properties of the isolated lignin were influenced by the black liquor pH as well as the pulping method. Highest pH (12,8) was recorded for kraft at 70:30 liquor concentration while lowest pH of 2,5 was recorded for both Aceticformic (70:30) and Ethanol/water (70:30 and 60:40). There were obvious differences in the characteristic colours, shapes and sizes of the lignin samples. Bamboo kraft lignin samples formed large pieces much easier than that of Organosolv. Aceticformic (70:30) had the best filteration properties (FC) while Ethanol/water had the poorest. Generally, kraft recorded the highest lignin yield while all the organosolv processes recorded reduced yield. Highest yield (119,25 g/L) was gotten from kraft (50:50) while Peroxyformic (60:40) had the lowest yield of 8,20 g/L. The results showed that higher liquor pH favours total dissolved solid as well as lignin precipitation. As the pH increases, total dissolved solid, yield, Klason and low molecular weight (LMW) lignin content increases while FC decreases. The Klason and LMW lignin content increased with incresing lignin yield.

Downloads

Download data is not yet available.

References

Chen, H.; Xu, G.H.; Xiao, C.Y.; Bi, Y.D.; Hu, J.L. 2019. Fast pyrolysis of organosolv lignin: effect of adding stabiliztion reagents to the extraction process. Energ Fuel 33: 8676–8682. https://doi.org/10.1021/acs.energyfuels.9b01486

Do, N.H.; Pham, H.H.; Le, T.M.; Lauwaert, J.; Diels, L.; Verberckmoes, A.; Do, N.H.N.; Tran, V.T.; Le, P.K. 2020. The novel method to reduce the silica content in lignin recovered from black liquor originating from rice straw. Sci Rep 10(21263): 1-10. https://doi.org/10.1038/s41598-020-77867-5

Domínguez, J.C.; Santos, T.M.; Rigual, V.; Oliet, M.; Alonso, M.V.; Rodriguez, F. 2018. Thermal stability, degradation kinetics, and molecular weight of organosolv lignins from Pinus radiata. Ind Crops Prod 111: 889–898. https://doi.org/10.1016/j.indcrop.2017.10.059

European Commission. E.C. 2001. Best Available Techniques (BAT) in the Pulp and Paper Industry. Integrated Pollution Prevention Control (IPPC). Institute for Prospective Technological studies, European Commission. Luxembourg. https://eippcb.jrc.ec.europa.eu/sites/default/files/2019-11/PP_revised_BREF_2015.pdf

Erdocia, X.; Prado, R.; Corcuera, M.A.; Labidi, J. 2014. Effect of different organosolv treatments on the structure and properties of olive tree pruning lignin. J Ind Eng Chem 20(3):1103–1108. https://doi.org/10.1016/j.jiec.2013.06.048

Faris, A.H.; Rahim, A.A.; Ibrahim, M.N.M.; Hussin, M.H.; Alkurdi, A.M.; Salehabadi, A. 2017. Investigation of oil palm based Kraft and auto-catalyzed organosolv lignin susceptibility as a green wood adhesives. Int J Adhes Adhes 74: 115–122. https://doi.org/10.1016/j.ijadhadh.2017.01.006

Food and Agriculture Organization of the United Nations. FAO. 1996. Environmental impact assessment and environmental auditing in the pulp and paper industry. FAO forestry paper no. 129. Rome, Italy.

Galbe, M.; Zacchi, G. 2002. A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59(1): 618–628. https://doi.org/10.1007/s00253-002-1058-9

Gavrilescu, M.; Teodosiu, C.; Gavrilescu, D.; Lupu, L. 2008. Strategies and practices for sustainable use of water in industrial papermaking processes. Eng Life Sci 8(1): 99-124. https://doi.org/10.1002/elsc.200720236

Gellerstedt, G.; Pranda, J.; Lindfors, E. 1994. Structure and Molecular Properties of Residual Birch Kraft Lignins. J Wood Sci Technol 14(4): 467-482. https://doi.org/10.1080/02773819408003108

Gellerstedt, G.; Henriksson, G. 2008. Lignins: Major Sources, Structure and Properties. Chapter 9: 201-224. In Monomers, Polymers Compos Renewable Resources. Belgacem, N.; Gandini, A. (Eds.). Elsevier Science. https://doi.org/10.1016/B978-0-08-045316-3.00009-0

Hidayati, S.; Zuidar, A.S.; Satyajaya, W.; Murhadi.; Retnowati, D. 2018. Isolation and characterization of formacell Lignins from oil empty fruits bunches. In IOP Conf. Series: Materials Science and Engineering 344(012006): 1-15. https://iopscience.iop.org/article/10.1088/1757-899X/344/1/012006

Hubbe, M.A.; Alén, R.; Paleologou, M.; Kannangara, M.; Kihlman, J. 2019. Lignin recovery from spent alkaline pulping liquors using acidification, membrane separation, and related processing steps: a review. BioResources 14: 2300–2351. https://bioresources.cnr.ncsu.edu/resources/lignin-recovery-from-spent-alkaline-pulping-liquors-using-acidification-membrane-separation-and-related-processing-steps-a-review/

Inkrod, C.; Raita, M.; Champreda, V.; Laosiripojana, N. 2018. Characteristics of Lignin Extracted from Different Lignocellulosic Materials via Organosolv Fractionation. BioEnerg Res 11: 277-290. https://doi.org/10.1007/s12155-018-9895-2

Jardim, J.M.; Hart, P.W.; Lucia, L.A.; Jameel, H.; Chang, H.M. 2020. The Effect of the Kraft Pulping Process, Wood Species, and pH on Lignin Recovery from Black Liquor. Fibers 10(2): 16. https://doi.org/10.3390/fib10020016

Jiang, B.; Chen, H.; Zhao, H.F.; Wu, W.J.; Jin, Y.C.; 2020. Structural features and antioxidant behavior of lignins successively extracted from ginkgo shells (Ginkgo biloba L). Int J Biol Macromol 163: 694–701. https://doi.org/10.1016/j.ijbiomac.2020.07.027

Kallavus, U.; Kärner, K.; Kärner, K.; Elomaa, M. 2015. Rapid semi-quantitative determination of aspen lignin in lignocellulosic products. In Proceedings of the Estonian Academy of Sciences. Volume 64.

Kamthai, S.; Puthson, P. 2005. Effect of beating revolution on sweet bamboo (Dendrocalamus asper Backer) kraft pulp properties. CMU J 4(2): 137-147. https://www.thaiscience.info/Journals/Article/CMUJ/10325022.pdf

Kihlman, J. 2016. The sequential liquid-lignin recovery and purification process: Analysis of integration aspects for a kraft pulp mill. NPPRJ 31: 573–582. https://doi.org/10.3183/npprj-2016-31-04-p573-582

Kim, T.H.; Kwak, H.; Kim, T.H.; Oh, K.K. 2021. Reaction Characteristics of Organosolv-Fractionation Process for Selective Extraction of Carbohydrates and Lignin from Rice Husks. Energies 14: 686. https://doi.org/10.3390/en14030686

Krief, P.; Courtrot, D.; Conso, F. 2008. Occupational toxicological risk related to the exposure to MDF wood dust. Archive des Maladies Professionnelles et de l’ Environment 69(5-6): 665-666.

Li, M.F.; Sun, S.N.; Xu, F.; Sun, R.C. 2012. Formic acid based organolsolv pulping of bamboo (Phyllostachys acuta): comparative characterization of the dissolved lignins with milled wood lignin. Chem Eng J 179(1): 80–89. https://doi.org/10.1016/j.cej.2011.10.060

Ma’ruf, P.B.; Pramudono, B.; Aryanti N. 2017. Optimization of Lignin Extraction from Rice Husk by Alkaline Hydrogen Peroxide Using Response Surface Methodology. Rasayan J Chem 10(2): 407-414. http://www.rasayanjournal.co.in/admin/php/upload/159_pdf.pdf

Minu, K.; Jiby, K.K.; Kishore, V.V.N. 2012 Isolation and purification of lignin and silica from the black liquor generated during the production of bioethanol from rice straw. Biomass Bioenergy 39: 210–217. https://doi.org/10.1016/j.biombioe.2012.01.007

Öhman, F.; Wallmo, H.; Theliander, H. 2007. Precipitation and filtration of lignin from black liquor of different origin. NPPRJ 22: 188–193. https://doi.org/10.3183/npprj-2007-22-02-p188-193

Patwardhan, P.R.; Brown, R.C.; Shanks, B.H. 2011. Understanding the fast pyrolysis of lignin. ChemSusChem 4(11): 1629–1636. https://doi.org/10.1002/cssc.201100133

Prozil, S.O.; Costa, E.V.; Evtuguin, D.V.; Lopes, L.P.C.; Domingues, M.R.M. 2012. Structural characterization of polysaccharides isolated from grape stalks of Vitis vinifera L. Carbohydr Res 356 (1): 252-259. https://doi.org/10.1016/j.carres.2012.02.001

Qin, Z.; Yang, Q.L.; Cheng, X.C.; Liu, H.M.; Wang, X.D. 2021. Structural features, chemical composition, antioxidant activities of organosolv lignins extracted from black and white sesame capsules and stalks. Ind Crops Prod 169: 113677. https://doi.org/10.1016/j.indcrop.2021.113677

Raita, M.; Denchokepraguy, N.; Champreda, V.; Laosiripojana, N. 2017. Effects of alkaline catalysts on acetone-based organosolv pretreatment of rice straw. 3 Biotech 7(5): 340. https://doi.org/10.1007/s13205-017-0969-1

Ruiz, H.A.; Ruzene, D.s.; Silva, D.P; Macieira da Silva, F.F.; Vicente, A.A.; Teixeira, J.A 2011. Development and Characterization of an Environmentally Friendly Process Sequence (Autohydrolysis and Organosolv) for Wheat Straw Delignification. Appl Biochem Biotechnol 164(1): 629–641. https://doi.org/10.1007/s12010-011-9163-9

Sannigrahi, P.; Kim, D.H.; Jung, S.; Ragauskas, A. 2011. Pseudo-lignin and pretreatment chemistry. Energy Environ Sci 4(1): 1306-1311. https://doi.org/10.1039/C0EE00378F

Sasaki, C.; Wanaka, M.; Takagi, H.; Tamura, S.; Asada, C.; Nakamura, Y. 2013. Evaluation of epoxy resins synthesized from steam exploded bamboo lignin. Ind Crop Prod 43(1): 757–761. https://doi.org/10.1016/j.indcrop.2012.08.018

Singh, S.K.; Dhepe, P.L. 2016. Isolation of lignin by organosolv process from different varieties of rice husk: understanding their physical and chemical properties. Bioresour Technol 221 (Supplement C) 221:310–317. https://doi.org/10.1016/j.biortech.2016.09.042

Soongprasit, K.; Sricharoenchaikul, V.; Atong, D. 2020. Phenol-derived products from fast pyrolysis of organosolv lignin. Energy Rep 6: 151–167. https://doi.org/10.1016/j.egyr.2020.08.040

Technical Association of the Pulp and Paper Industry. 2006. Reaffirmation of Tappi T222 om-02. Standard test methods for determining Acid Insoluble Lignin in Wood and Pulp. TAPPI Press, Atlanta, GA.

Technical Association of the Pulp and Paper Industry. 2009. Tappi T 650 om-09. Standard test methods for determining Solids content of black liquor 2009. TAPPI Press, Atlanta, GA.

Tomani, P. 2010. The lignoboost process. Cellul Chem Technol 44: 53–58. https://cellulosechemtechnol.ro/pdf/CCT44,1-3%20(2010)/P.53-58.pdf

Tomlinson, Jr. G.H.; Tomlinson, G.H. 1946. Method of treating lignocellulosic material. US Patent. US Patent 2,406,867.

United Nation Environment Programme. 1996. Environmental management in the pulp and paper industry. United Nation Environment Programme, Industries and Environment. Technical Report No. 4, Stockholm, Sweden.

Vazquez-Torres, H.; Canchg-Escamilla, G.; Cruz-ramos, C.A. 1992. Coconut husk lignin. 1. Extraction and characterization. J Appl Polym Sci 45(1): 633-644. https://doi.org/10.1002/app.1992.070450410

Velez, J.; Thies, M.C. 2013. Solvated liquid-lignin fractions from a Kraft black liquor. Bioresour Technol 148: 586–590. https://doi.org/10.1016/j.biortech.2013.08.097

Wang, S.R.; Ru, B.; Lin, H.Z.; Sun, W.X.; Luo, Z.Y. 2015. Pyrolysis behaviors of four lignin polymers isolated from the same pine wood. Bioresour Technol 182: 120–127. https://doi.org/10.1016/j.biortech.2015.01.127

Wang, T.; Li, H.; Yuan, J.; Li, W.; Li, K.; Huang, Y.; Xiao, L.; Lu, Q. 2021. Structures and pyrolytic characteristics of organosolv lignins from typical softwood, hardwood and herbaceous biomass. Ind Crop Prod 171:13912. https://doi.org/10.1016/j.indcrop.2021.113912

Watkins, D.; Hosur, N.M.; Tcherbi-narteh, A.; Jeelani, S. 2014. Extraction and characterization of lignin from different biomass resources. J Mater Res Technol 4(1): 26–32. https://doi.org/10.1016/j.jmrt.2014.10.009

Xu, F.; Yu, J.; Tesso, T.; Dowell, F.; Wang, D. 2013. Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a mini-review. Appl Energy 104(1): 801-809. https://doi.org/10.1016/j.apenergy.2012.12.019

Zhao, X.; Cheng, K.; Liu, D. 2009. Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. J Appl Microbiol Biotechnol 82(1): 815-27. https://doi.org/10.1007/s00253-009-1883-1

Downloads

Published

2023-01-27

How to Cite

Aderinsola Sadiku, N., & Faruq Yusuph, A. . (2023). Characterisation of lignins isolated from bamboo organosolv and kraft black liquor. Maderas. Ciencia Y Tecnología, 25, 1–14. https://doi.org/10.4067/s0718-221x2023000100415

Issue

Section

Article

Most read articles by the same author(s)