Artificial intelligence to growth stresses predicting in Eucalyptus clones using dendrometric variables and wood density

Authors

  • Thiago Campos Monteiro https://orcid.org/0000-0002-3819-7035
  • Carlos Alberto Araújo Júnior
  • Jean Henrique dos Santos
  • Thiago Cardoso Silva
  • Thiago Magalhães do Nascimento
  • José Luiz Ferraresso Conti Junior
  • Jorge Luis Monteiro de Matos
  • Ricardo Jorge Klitzke
  • Márcio Pereira da Rocha

DOI:

https://doi.org/10.4067/s0718-221x2023000100430

Keywords:

Artificial neural networks, basic density, Eucalyptus clones, growth stresses, longitudinal growth strain

Abstract

Eucalyptus planted forests contribute to maximizing lumber production but problems such as longitudinal growth strain can negatively influence the quality of the products. Knowing dendrometric variables and wood properties can help in the prediction of longitudinal growth strain, mainly with the help of artificial intelligence. Thus, the aim of this research was to evaluate the use of artificial neural networks to predict longitudinal growth strain in Eucalyptus trees based on dendrometric variables, spacing between trees and wood density. The longitudinal growth strain was measured in trees of four Eucalyptus clones planted in three spacings. The diameter and height of each tree were measured. The basic wood density was determined. Artificial neural networks were used to estimate longitudinal growth strain as a function of dendrometric variables, tree spacing and wood density. The results showed that the artificial neural networks presented good results for training and validation, with most of them resulting in high correlation coefficient values. The trained artificial neural networks showed a correlation coefficient above 0,56. Artificial neural networks showed that the variables clone and basic wood density were the ones that most contributed to the prediction of longitudinal growth strain. On the other hand, the spacing between trees, the height of the tree and the diameter at breast height were not relevant to predict growth stresses.

Downloads

Download data is not yet available.

References

Amer, M.; Kabouchi, B.; Rahouti, M.; Famiri, A.; Fidah, A.; Ziani, M.; El Alami, S. 2019. Kinetic of cracks propagation related to the growth stress of clonal Eucalyptus wood. J Indian Acad Wood Sci 16: 155–161. https://doi.org/10.1007/s13196-019-00242-z

Archer, R.R. 1986. Growth Stresses and Strains in Trees. Springer, Berlin, Germany. https://doi.org/10.1007/978-3-662-03898-7.

Associação Brasileira de Normas Técnicas. 2003. Madeira - Determinação da densidade básica. NBR 11941. ABNT. Rio de Janeiro, Brazil. (Portuguese)

Beck, M.W. 2018. Neural Net Tools: Visualization and analysis tools for neural networks. J Stat Software 1(11): 1-20. https://doi.org/10.18637/jss.v085.i11

Beltrame, R.; Lazarotto, M.; Haselein, C.R.; Santini, E.J.; Schneider, P.R.; Aguiar, A.M. 2012. Determinação das deformações residuais longitudinais decorrentes das tensões de crescimento em Eucalyptus spp. Cienc Florest 22: 343–351. https://doi.org/10.5902/198050985741 (In Portuguese)

Braz, R.L.; Oliveira, J.T.S.; Rosado, A.M.; Vidaurre, G.B.; Oliveira, J.G.L. 2017. Deformação residual longitudinal de clones de Eucalyptus em local sujeito a ventos. FLORAM 24: e00028013. https://doi.org/10.1590/2179-8087.028013 (In Portuguese)

Bukauskas, A.; Mayencourt, P.; Shepherd, P.; Sharma, B.; Mueller, C.; Walker, P.; Bregulla, J. 2019. Whole timber construction: a state of the art review. Constr Build Mater 213: 748–769. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2019.03.043

Calegario, N.; Daniels, R.F.; Maestri, R.; Neiva, R. 2005. Modeling dominant height growth based on nonlinear mixed-effects model: a clonal Eucalyptus plantation case study. For Ecol Manage 204: 11–21. https://doi.org/https://doi.org/10.1016/j.foreco.2004.07.051

Cardoso Junior, A.A.; Trugilho, P.F.; Lima, J.T.; Rosado, S.C.S.; Mendes, L.M. 2005. Longitudinal residual strain in different spacing and ages in hybrid clone of Eucalyptus. Cerne 11: 218–224. http://www.cerne.ufla.br/site/index.php/CERNE/article/view/439

Carrijo, J.V.N.; Miguel, E.P.; Vale, A.T.; Matricardi, E.A.T.; Monteiro, T.C.; Rezende, A.V.; Inkotte, J. 2020. Artificial intelligence associated with satellite data in predicting energy potential in the Brazilian savanna woodland area. IForest 13: 48–55. https://doi.org/10.3832/ifor3209-012

Cruz, C.R.; Lima, J.T.; Muniz, G.I.B. 2003. Variações dentro das árvores e entre clones das propriedades físicas e mecânicas da madeira de híbridos de Eucalyptus. Sci For Sci 64: 33–47. https://www.ipef.br/publicacoes/scientia/nr64/cap03.pdf (In Portuguese)

Diaz Bravo, S.D.; Espinosa, M.; Valenzuela, L.; Cancino, J.; Lasserre, J.P. 2012. Efecto del raleo en el crecimiento y algunas propiedades de la madera de Eucalyptus nitens en una plantación de 15 años. Maderas-Cienc Tecnol 14(3): 373-388. https://doi.org/10.4067/s0718-221x2012005000009

Ercanlı, İ. 2020. Innovative deep learning artificial intelligence applications for predicting relationships between individual tree height and diameter at breast height. For Ecosyst 7:12. https://doi.org/10.1186/s40663-020-00226-3

Fang, R.; Strimbu, B.M. 2017. Stem measurements and taper modeling using photogrammetric point clouds. Remote Sens 9(7): 716. https://doi.org/10.3390/rs9070716

Ferraz Filho, A.C.; Mola-Yudego, B.; Ribeiro, A.; Scolforo, J.R.S.; Loos, R.A.; Scolforo, H.F. 2018. Height-diameter models for Eucalyptus sp. plantations in Brazil. Cerne 24: 9–17. https://doi.org/10.1590/01047760201824012466

Ferreira, D.H.A.A.; Leles, P.S.D.S.; Machado, E.C.; Abreu, A.H.M.; Abilio, F.M. 2014. Crescimento de clone de Eucalyptus urophylla x E. grandis em diferentes espaçamentos. Floresta 44: 431–440. https://doi.org/http://dx.doi.org/10.5380/rf.v44i3.32188 (In Portuguese)

Fournier, M.; Chanson, B.; Thibaut, B.; Guitard, D. 1994. Mesures des déformations résiduelles de croissance à la surface des arbres, en relation avec leur morphologie. Observations sur différentes espèces. Sci For 51: 249–266. https://doi.org/10.1051/forest:19940305

França, F.J.N.; Vidaurre, G.B.; Nutto, L.; Abad, J.I.M.; Batista, D.C.; Moulin, J.C. 2017. Relation between dendrometric variables and growth stress in Eucalyptus. FLORAM 24: e00128215. https://doi.org/10.1590/2179-8087.128215

Fritsch, S.; Guenther, F.; Wright, M.N. 2019. Neuralnet: training of neural networks. R package version 1.44.2.

Garson, G.D. 1991. Interpreting neural-network connection weights. AI Expert 6: 46–51.

Gril, J.; Jullien, D.; Bardet, S.; Yamamoto, H. 2017. Tree growth stress and related problems. J Wood Sci 63: 411–432.

Hakamada, R.; Hubbard, R.M.; Ferraz, S.; Stape, J.L.; Lemos, C. 2017. Biomass production and potential water stress increase with planting density in four highly productive clonal Eucalyptus genotypes. South For 79: 251–257. https://doi.org/10.2989/20702620.2016.1256041

Kojima, M.; Yamamoto, H.; Saegusa, K.; Yamaji, F.M.; Yoshida, M.; Yamashita, S.; Nakai, T. 2011. Anatomical and chemical factors affecting tensile growth stress in Eucalyptus grandis plantations at different latitudes in Brazil. Can J For Res 42: 134–140. https://doi.org/10.1139/x11-161

Li, J.; Liu, S.; Zhou, L.; Liu, Y.M. 2018. Growth strain in straight and inclined Populus × euramericana cv. ‘74/76’ trees, and its relationship with selected wood properties. Eur J Wood Wood Prod 76: 1715–1723. https://doi.org/10.1007/s00107-018-1333-9

Luz, O.S.L.; Terra, T.G.R.; Lima, S.O.; Siebeneichlet, S.C.; Moraes, C.B.; Leal, T.C.A.B. 2019. Luminous interception of eucalyptus clones at different structural arrangements for integrated production systems. Floresta 49: 227–236. http://dx.doi.org/10.5380/rf.v49i2.56962

Melo, R.R.; Miguel, E.P. 2016. Use of artificial neural networks in predicting particleboard quality parameters. Rev Arvore 40: 949–958. https://doi.org/10.1590/0100-67622016000500019

Miguel, E.P.; Melo, R.R.; Junior, L.S.; Del Menezzi, C.H.S. 2018. Using artificial neural networks in estimating wood resistance. Maderas-Cienc Tecnol 20(4): 531–542. https://doi.org/10.4067/S0718-221X2018005004101

Nunes, M.H.; Görgens, E.B. 2016. Artificial intelligence procedures for tree taper estimation within a complex vegetation mosaic in Brazil. PLoS One 11: e0154738. https://doi.org/10.1371/journal.pone.0154738

Omonte, M.; Valenzuela, L. 2015. Longitudinal growth stresses in Eucalyptus nitens trees with sawable dimensions. Maderas-Cienc Tecnol 17(3): 673–684. https://doi.org/10.4067/S0718-221X2015005000059

R Core Team. 2019. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.r-project.org/.

Ramage, M.H.; Burridge, H.; Busse-Wicher, M.; Fereday, G.; Reynolds, T.; Shah, D.U.; Wu, G.; Yu, L.; Fleming, P.; Densley-Tingley, D.; Allwood, J.; Dupree, P.; Linden, P.F.; Scherman, O. 2017. The wood from the trees: The use of timber in construction. Renew Sustain Energy Rev 68: 333–359. https://doi.org/https://doi.org/10.1016/j.rser.2016.09.107

Resquin, F.; Navarro-Cerrillo, R.M.; Carrasco-Letelier, L.; Rachid-Casnati, C. 2020. Influence of Eucalyptus benthamii, Eucalyptus dunnii and Eucalyptus grandis planted in Uruguay. New For 51: 631-655. https://doi.org/10.1007/s11056-019-09749-2

Schönau, A.P.G.; Coetzee, J. 1989. Initial spacing, stand density and thinning in eucalypt plantations. For Ecol Manage 29: 245–266. https://doi.org/https://doi.org/10.1016/0378-1127(89)90097-2

Silva, J.P.M.; Cabacinha, C.D.; Assis, A.L.; Monteiro, T.C.; Araújo Júnior, C.A.; Maia, R.D. 2018. Redes neurais artificiais para estimar a densidade básica de madeiras do cerrado. Pesq Flor Bras 38. https://doi.org/10.4336/2018.pfb.38e201801656 (In Portuguese)

Soares, A.A.V.; Leite, H.G.; Souza, A.L.; Silva, S.R.; Lourenço, H.M.; Forrester, D.I. 2016. Increasing stand structural heterogeneity reduces productivity in brazilian Eucalyptus monoclonal stands. For Ecol Manage 373: 26–32. https://doi.org/https://doi.org/10.1016/j.foreco.2016.04.035

Stape, J.L.; Binkley, D. 2010. Insights from full-rotation nelder spacing trials with Eucalyptus in São Paulo, Brazil. Southern Forests: a Journal of Forest Science 72: 91–98. https://doi.org/10.2989/20702620.2010.507031

Tavares Júnior, I. S.; Rocha, J.E.C.; Ebling, Â.A.; Chaves, A.S.; Zanuncio, J.C.; Farias, A.A.; Leite, H.G. 2019. Artificial neural networks and linear regression reduce sample intensity to predict the commercial volume of Eucalyptus clones. Forests 10(3): 268. https://doi.org/10.3390/f10030268

Trugilho, P.F.; Lima, J.T.; Pádua, F.A.; Soragi, L.C.; Andrade, C.R. 2006. Deformação residual longitudinal (drl) e tangencial (drt) em seis clones de Eucalyptus spp. Cerne 12: 279–286. https://scielo.conicyt.cl/pdf/maderas/v23/0718-221X-maderas-23-1.pdf (In Portuguese)

Trugilho, P.F.; Oliveira, J.T.S. 2008. Relationships and estimates of longitudinal growth stress in Eucalyptus dunnii at different ages. Rev Arvore 32: 723–729. https://doi.org/10.1590/S0100-67622008000400014

Valencia, J.; Harwood, C.; Washusen, R.; Morrow, A.; Wood, M.; Volker, P. 2011. Longitudinal growth strain as a log and wood quality predictor for plantation-grown Eucalyptus nitens sawlogs. Wood Sci Technol 45: 15–34. https://doi.org/10.1007/s00226-010-0302-1

Xavier, C.N.; Silva, C.E.S.; Santos, P.V.; Carvalho, A.M.; Nascimento, A.M.; Brancalion, P.H.S. 2018. Growth stress in Peltophorum dubium and its correlation with the growth variables. FLORAM 25(1): e20160252. https://doi.org/10.1590/2179-8087.025216

Zobel, B.J.; Van Buijtenen, J.P. 1989. Wood variation: Its causes and control. Springer-Verlag Berlin Heidelberg. Berlin, Germany. https://doi.org/10.1007/978-3-642-74069-5_3.

Downloads

Published

2023-04-12

How to Cite

Campos Monteiro, T. ., Araújo Júnior, C. A. ., dos Santos, J. H. ., Cardoso Silva, T. ., Nascimento, T. M. do ., Conti Junior, J. L. F. ., Monteiro de Matos, J. L. ., Klitzke, R. J. ., & Pereira da Rocha, M. . (2023). Artificial intelligence to growth stresses predicting in Eucalyptus clones using dendrometric variables and wood density. Maderas-Cienc Tecnol, 25, 1–12. https://doi.org/10.4067/s0718-221x2023000100430

Issue

Section

Article

Most read articles by the same author(s)