Surface changes in wood submitted to thermomechanical densification
DOI:
https://doi.org/10.22320/s0718221x/2024.42Keywords:
Surface roughness, densification, hydrophobicity, thermos-mechanical treatment, wettability, wood chemistry, wood morphologyAbstract
Ideal thermomechanical treatment conditions that reduce roughness and increase hydrophobicity of the wood surface require further investigation. In this study, a thermo-mechanical densification process was applied to Gmelina arborea (gamhar) wood. Three temperatures were used (140 °C, 160 °C and 180 °C) and two compaction rates (20 % and 40 %), applied for 30 minutes in a hot hydraulic press with final pressure of 2,5 MPa. Chemical changes, wettability and surface roughness of control and densified samples were investigated, as well as morphological changes. Densification partially degraded the hemicelluloses. Consequently, the wettability of the tangential surface of the densified wood decreased, with a more hydrophobic surface. Similarly, densification reduced surface roughness, especially when filtering was used for natural wood structures, with morphological changes on the surface of the densified samples. Densification with the highest temperature (180 °C) and 20 % compaction created the most hydrophobic surface (>90 °). In contrast, densification with the lowest temperature (140 °C) and compaction of 40 % provided the best results of the roughness parameters, with significant reductions, making it an applicable technique to minimize the roughness of wood in general and improve surface quality.
Downloads
References
Alqrinawi, H.; Ahmed, B.; Wu, Q.; Lin, H.; Kameshwar, S.; Shayan, M. 2024. Effect of partial delignification and densification on chemical, morphological, and mechanical properties of wood: Structural property evolution. Industrial Crops and Products 213: e118430. https://doi.org/10.1016/j.indcrop.2024.118430
Arruda, L.M.; Del Menezzi, C.H.S. 2013. Effect of thermomechanical treatment on physical properties of wood veneers. International Wood Products Journal 4(4): 217-224. https://doi.org/10.1179/2042645312Y.0000000022
Bao, M.; Huang, X.; Jiang, M.; Li, N.; Yu, Y.; Yu, W. 2018. Study on the changes in surface characteristics of Populus tomentosa due to thermo-hydro-process. Journal of Wood Science 64: 264-278. https://doi.org/10.1007/s10086-018-1697-9
Bekhta, P.; Krystofiak, T. 2016. The influence of short-term thermo-mechanical densification on the surface wettability of wood veneers. Maderas. Ciencia y Tecnología 18(1): 79-90. https://doi.org/10.4067/S0718-221X2016005000008
Bekhta, P.; Krystofiak, T.; Proszyk, S.; Lis, B. 2018. Surface gloss of lacquered medium density fibreboard panels veneered with thermally compressed birch wood. Progress in Organic Coatings 117: 10-19. https://doi.org/10.1016/j.porgcoat.2017.12.020
Bekhta, P.; Proszyk, S.; Krystofiak, T.; Mamonova, M.; Pinkowski, G.; Lis, B. 2014. Effect of thermomechanical densification on surface roughness of wood veneers. Wood Material Science & Engineering 9(4): 233-245. https://doi.org/10.1080/17480272.2014.923042
Cabral, J.P.; Kafle, B.; Subhani, M.; Reiner, J.; Ashraf, M. 2022. Densification of timber: a review on the process, material properties, and application. Journal of Wood Science 68: e20. https://doi.org/10.1186/s10086-022-02028-3
Cademartori, P.H.G.; Stafford, L.; Blanchet, P.; Magalhães, W.L.E.; Muniz, G.I.B. 2017. Enhancing the water repellency of wood surfaces by atmospheric pressure cold plasma deposition of fluorocarbon film. RSC Advances 46(7): 29159-29169. https://doi.org/10.1039/C7RA03334F
Cai, J.B.; Ding, T.; Yang, L. 2012. Dimensional stability of poplar wood after densification combined with heat treatment. Applied Mechanics and Materials (152-154): 112-116. https://doi.org/10.4028/www.scientific.net/AMM.152-154.112
Carvalho, D.E.; Rocha, M.P.; Klitzke, R.J.; Cademartori, P.H.G. 2021. Colour changes and equilibrium moisture content on thermomechanical densified wood. Anais da Academia Brasileira de Ciências 93(4). https://doi.org/10.1590/0001-3765202120200109
Chu, D.; Mu, J.; Avramidis, S.; Rahimi, S.; Liu, S.; Lai, Z. 2019. Functionalized Surface Layer on Poplar Wood Fabricated by Fire Retardant and Thermal Densification. Part 2: Dynamic Wettability and Bonding Strength. Forests 10(11): e982. https://www.mdpi.com/1999-4907/10/11/982
Diouf, P.N.; Stevanovic, T.; Cloutier, A.; Fang, C.H.; Blanchet, P.; Koubaa, A.; Mariotti, N. 2011. Effects of thermo-hygro-mechanical densification on the surface characteristics of trembling aspen and hybrid poplar wood veneers. Applied Surface Science 257(8): 3558-3564. https://doi.org/10.1016/j.apsusc.2010.11.074
Dömény, J.; Čermák, P.; Koiš, V.; Tippner, J.; Rousek, R. 2018. Density profile and microstructural analysis of densified beech wood (Fagus sylvatica L.) plasticized by microwave treatment. European Journal of Wood and Wood Products 76(7): 105-111. https://doi.org/10.1007/s00107-017-1173-z
ER. 1993. The development of methods for the characterisation of roughness in three dimensions. Commission of the European Communities, EUR 15178N EM, Butterworth-Heinemann Elsevier Ltd, Oxford, United Kingdom.
Fu, Q.; Cloutier, A.; Laghdir, A.; Stevanovic, T. 2019. Surface Chemical Changes of Sugar Maple Wood Induced by Thermo-Hygromechanical (THM) Treatment. Materials12(12). e1946. https://doi.org/10.3390/ma12121946
Gao, Z.; Huang, R. 2022. Effects of Pressurized Superheated Steam Treatment on Dimensional Stability and Its Mechanisms in Surface-Compressed Wood. Forests 13(8): e1230. https://doi.org/10.3390/f13081230.
Gullo, F.; Marangon A.; Croce, A.; Gatti, G.; Aceto, M. 2023. From Natural Woods to High Density Materials: An Ecofriendly Approach. Sustainability 15(3): e2055. https://doi.org/10.3390/su15032055.
Gonultas, O.; Candan, Z. 2018. Chemical characterization and ftir spectroscopy of thermally compressed eucalyptus wood panels. Maderas. Ciencia y Tecnología 20(3): 431-442. https://doi.org/10.4067/S0718-221X2018005031301
Guo, J.; Song, K.; Salmén, L.; Yin, Y. 2015. Changes of wood cell walls in response to hygro-mechanical steam treatment. Carbohydrate Polymers 115: 207-214. https://doi.org/10.1016/j.carbpol.2014.08.040
Gurau, L.; Mansfield-Williams, H.; Irle, M. 2005. Processing roughness of sanded wood surfaces. Holz Roh Werkst 63: 43-52. https://doi.org/10.1007/s00107-004-0524-8
Hakkou, M.; Petrissans, M.; El Bakali, I.; Gerardin, P.; Zoulalian, A. 2005. Wettabilty changes and mass loss during heat treatment of wood. Holzforschung 59: 35-37. https://doi.org/10.1515/HF.2005.006
He, S.; Chen, C.; Li, T.; Song, J.; Zhao, X.; Kuang, Y.; Liu, Y.; Pei, Y.; Hitz, E.; Kong, W.; Gan, W.; Yang, B.; Yang, R.; Hu, L. 2020. An energy‐efficient, wood‐derived structural material enabled by pore structure engineering towards building efficiency. Small Methods 4(1): e1900747. https://doi.org/10.1002/smtd.201900747
Inari, G.N.; Petrissans, M.; Lambert, J.; Ehrhardt, J.; Gérardin, P. 2006. XPS characterization of wood chemical composition after heat-treatment. Surface and Interface Analysis 38(10): 1336-1342. https://doi.org/10.1002/sia.2455
ISO. 2013. Geometrical Product Specifications (GPS). ISO 25178-3, Surface texture: Areal - Part 3.
Li, K.; Zhao, L.; Ren, J.; He, B. 2022. Interpretation of strengthening mechanism of densified wood from supramolecular structures. Molecules 27(13): e4167. https://doi.org/10.3390/molecules27134167
Luan, Y.; Fang, C.H.; Ma, Y.F.; Fei, B.H. 2022. Wood mechanical densification: a review on processing. Materials and Manufacturing Processes 37(4): 359-371. https://doi.org/10.1080/10426914.2021.2016816
Metsä-Kortelainen, S.; Viitanen, H. 2012.Wettability of sapwood and heartwood of thermally modified Norway spruce and Scots pine. European Journal of Wood and Wood Products 70(1-3):135-139. https://doi.org/10.1007/s00107-011-0523-5
Navi, P.; Sandberg, D. 2012. Thermo-Hydro-Mechanical Processing of Wood. EPEL Press: Lausanne, Switzerlan.
Raabe, J.; Del Menezzi, C.; Goncalez, J. 2017. Avaliação da Superfície de Lâminas Decorativas de Curupixá (Micropholis venulosa Mart. Eichler). Floresta e Ambiente 24: e20150054. https://doi.org/10.1590/2179-8087.005415
Sandak, J.; Negri, M. 2005. Wood surface roughness- What is it? - In: Proceedings of the 17th International Wood Machining Seminar (IWMS 17). Rosenheim, Germany.
Sandberg, D.; Eggert, O.; Haider, A.; Kamke, F.; Wagenführ, A. 2023. Forming, Densification and Molding. In Springer Handbook of Wood Science and Technology. Cham: Springer International Publishing. http://dx.doi.org/10.1007/978-3-030-81315-4_18
Santos, C.M.T.; Del Menezzi, C.H.; Souza, M.R. 2012.Properties of thermo-mechanically treated wood from Pinus caribaea var. hondurensis. BioResources 7(2): 1850-1865. https://doi.org/10.15376/ biores.7.2.1850-1865
Scharf, A.; Neyses, B.; Sandberg, D. 2023. Continuous densification of wood with a belt press: the process and properties of the surface-densified wood. Wood Material Science & Engineering 18(4): 1573-1586. https://doi.org/10.1080/17480272.2023.2216660
Scharf, A.; Lemoine, A.; Neyses, B.; Sandberg, D. 2023. The effect of the growth ring orientation on spring-back and set-recovery in surface-densified wood. Holzforschung 77 (6): 394-406. https://doi.org/10.1515/hf-2023-0004
Schwarzkopf, M. 2020. Densified wood impregnated with phenol resin for reduced set-recovery. Wood Material Science & Engineering 16(1): 35-41. https://doi.org/10.1080/17480272.2020.1729236
Silva, F.A.V.; Silva, J.R.M.; Moulin, J.C.; Andrade, A.C.A.; Nobre, J.R.C.; Castro, J.P. 2016. Qualidade da superfície usinada em pisos de madeira de Corymbia e Eucalyptus. Floresta 46(3):397-403. https://doi.org/10.5380/rf.v46i3.43936
Tenorio, C.; Moya, R.; Starbird-Perez, R. 2023. Effect of steaming and furfuryl alcohol impregnation pre-treatments on the spring back, set recovery and thermal degradation of densified wood of three tropical hardwood species. European Journal of Wood and Wood Products 81(2): 467-480.https://doi.org/10.1007/s00107-022-01890-8
Unsal, O.; Candan, Z.; Buyuksari, U.; Korkut, S.; Chang, Y.S.; Yeo, H. 2011. Effect of Thermal Compression Treatment on the Surface Hardness, Vertical Density Propile and Thickness Swelling of Eucalyptus Wood Boards by Hot-pressing. Journal of the Korean Wood Science and Technology 39(2): 48-155. https://doi.org/10.5658/WOOD.2011.39.2.148
Whitehouse, D.J. 2011.Handbook of Surface and Nanometrology. 2nd Edition, CRC Press, Taylor & Francis: New York, United States of America.
Windeisen, E.; Wegener, G. 2008. Behaviour of lignin during thermal treatments of wood. Industrial Crops and Products 27(2): 157-162. https://doi.org/10.1016/j.indcrop.2007.07.015
Wu, J.; Fan, Q.; Wang, Q.; Guo, Q.; Tu, D.; Chen, C.; Xiao, Y.; Ou, R. 2020. Improved performance of poplar wood by an environmentally-friendly process combining surface impregnation of a reactive waterborne acrylic resin and unilateral surface densification. Journal of Cleaner Production 261(1): e121022. https://doi.org/10.1016/j.jclepro.2020.121022
Yuan, Y.; Lee, T.R. 2013. Contact angle and wetting properties. Bracco, G.; Holst, B, editors. In Surface sciences techniques. Springer-Verlag Berlin Heidelberg: New York, United States of America. https://doi.org/10.1007/978-3-642-34243-1
Zao, Y.; Qu, D.; Yu, T.; Xie, X.; He, C.; Ge, D.; Yang, L. 2020. Frost-resistant high-performance wood via synergetic building of omni-surface hydrophobicity. Chemical Engineering Journal 385: e123860. https://doi.org/10.1016/j.cej.2019.123860
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de Reconocimiento de Creative Commons CC-BY que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.