Wood polymer composite bonded veneer based hybrid composites

Authors

  • Siddhartha Arya
  • Shakti Chauhan
  • Ritesh Kumar
  • Bhushan Kelkar

DOI:

https://doi.org/10.4067/s0718-221x2023000100440

Keywords:

Hybrid composite, laminated veneer lumber, Melia dubia, plywood, wood polymer composite

Abstract

Wood veneer based composites have a great demand in present market as the material can  utilize small diameter plantation timbers grown at short rotation cycle. This paper presents preparation and characterization of hybrid composites made of wood veneer and wood polymer composite. The study explored utilization of wood polymer composite as an adhesive for bonding veneers replacing formaldehyde-based adhesives. Wood polymer composite containing 40 % bamboo particles embedded in the matrix of polypropylene was used in sheet form to bind the veneers of Melia dubia wood. The composites were prepared in both laminated veneer lumber and plywood configurations. The assessment of physical and mechanical properties indicated that the properties of wood polymer composite contribute significantly to the properties of the hybrid composites. The density of the resultant composites was significantly higher (0,69 g/cm3 – 0,75 g/cm3) than conventional plywood or laminated veneer lumber. Among mechanical properties, there was no statistical difference in tensile and flexural strength of plywood and laminated veneer lumber configuration. Modulus of elasticity and compressive strength of laminated veneer lumber configuration were significantly higher than plywood. Glue shear strength and internal bond strength of the composites indicated acceptable bonding properties of wood polymer composite which suggests the potential application of these composites as a binding agent for wood veneers. These composites could be a special class of laminated composites with no formaldehyde emission hazards.

Downloads

Download data is not yet available.

References

Arya, S.; Chauhan, S. 2022. Preparation of plywood panels using waste milk pouches as an adhesive. Maderas-Cienc Tecnol 24(12): 1-10. http://dx.doi.org/10.4067/s0718-221x2022000100412

Arya, S.; Chauhan, S.; Kumar, R. 2022. Plastic bonded plywood using waste polypropylene container. Mater Today: Proc 67(3): 471-477 https://doi.org/10.1016/j.matpr.2022.07.026

Ashok, M. 2015. An advance study on jute- polyester composites for mechanical design and impact safety applications. PhD thesis, Indian Institute of Science, Bangalore, India.

Benthien, J.T.; Thoemen, H. 2012. Effects of raw materials and process parameters on the physical and mechanical properties of flat pressed WPC panels. Compos Part A Appl Sci Manuf 43(4): 570-576. https://doi.org/10.1016/j.compositesa.2011.12.028

Bureau of Indian Standards. 1983. Methods of test for plywood. BIS 1734. BIS. New Delhi, India. https://www.iitk.ac.in/ce/test/IS-codes/is.1734.1-20.1983.pdf

Bureau of Indian Standards. 1999. Laminated veneer lumber specification. BIS 14616. BIS. New Delhi, India. https://law.resource.org/pub/in/bis/S03/is.14616.1999.pdf

Carus, M.; Gahle, C.; Korte, H. 2008. Market and future trends for wood–polymer composites in Europe: the example of Germany. Chapter 14. In: Wood-polymer composites. Oksman, K.; Sain, M. (Ed.). Woodhead Publishing, Sawston, United Kingdom. https://doi.org/10.1533/9781845694579.300

Chang, L.; Guo, W.; Tang, Q. 2017. Assessing the Tensile Shear Strength and Interfacial Bonding Mechanism of Poplar Plywood with High- density Polyethylene Films as Adhesive. Bioresource 12(1): 571-585. https://doi.org/10.15376/biores.12.1.571-585

Chang, L.; Tang, Q.; Gao, L.; Fang, L.; Wang, Z.; Guo, W. 2018. Fabrication and characterization of HDPE resins as adhesives in plywood. Eur J Wood Prod 76(1): 325-335. https://doi.org/10.1007/s00107-016-1117-z

Chauhan, S.S.; Entwistle, K.M.; Walker, J.C. 2005. Differences in acoustic velocity by resonance and transit-time methods in an anisotropic laminated wood medium. Holzforschung 59(4): 428–434. https://doi.org/10.1515/HF.2005.070

Chauhan, S. S.; Aggarwal, P.; Karmarkar, A. 2016. The effectiveness of m-TMI-grafted-PP as a coupling agent for wood polymer composites. J Compos Mater 50(25): 3515–3524. https://doi.org/10.1177/0021998315622050

Chauhan, S.; Sethy, A. 2016. Differences in dynamic modulus of elasticity determined by three vibration methods and their relationship with static modulus of elasticity. Madera-Cienc Tecnol 18(2): 373-382. http://dx.doi.org/10.4067/S0718-221X2016005000034

Demirkır, C. 2008. Using areas and ensuring advantages of plywood panels in buildings. Artvin Çoruh University Faculty Forestry J 9(1–2): 68–76. http://ofd.artvin.edu.tr/download/article-file/25685 (In Turkish)

Fang, L.; Chang, L.; Guo, W. J., Chen, Y.; Wang, Z. 2014. Influence of silane surface modification of veneer on interfacial adhesion of wood-plastic plywood. Appl Surf Sci 288: 682–689. https://doi.org/10.1016/j.apsusc.2013.10.098

Fang, L.; Xiong, X.; Wang, X.; Chen, H.; Mo, X. 2017. Effects of surface modification methods on mechanical and interfacial properties of high-density polyethylene-bonded wood veneer composites. J Wood Sci 63(1): 65-73. https://doi.org/10.1007/s10086-016-1589-9

Gunjal, J.; Abhilash, R.M.; Chauhan, S.S. 2020. Effect of repeated cycles of wetting and drying on mechanical properties of wood–polypropylene composites. J Indian Acad Wood Sci 17(2): 114-122. https://doi.org/10.1007/s13196-020-00262-0

Hung, K.C.; Yeh, H.; Yang, T.C.; Wu, T.L.; Xu, J.W.; Wu, J.H. 2017. Characterization of wood-plastic composites made with different lignocellulosic materials that vary in their morphology, chemical composition and thermal stability. Polymers 9(12): 726. https://doi.org/10.3390/polym9120726

IBM. 2019. SPSS statistical software Version 27. https://www.ibm.com/spss

Imam, S.H.; Mao, L.; Chen, L.; Greene, R.V. 1999. Wood adhesive from crosslinked poly (vinyl alcohol) and partially gelatinized starch: preparation and properties. Starke 51(6): 225-229. https://doi.org/10.1002/(SICI)1521-379X(199906)51:6%3C225::AID-STAR225%3E3.0.CO;2-F

Jang, Y.; Huang, J.; Li, K. 2011. A new formaldehyde-free wood adhesive from renewable materials. Int J Adhes Adhes 31(7): 754–759. https://doi.org/10.1016/j.ijadhadh.2011.07.003

Kajaks, J.; Kalnins, K.; Matvejs, J. 2020. Adhesion investigations of systems based on birch plywood and wood plastic composites. Key Eng Mater 850: 76–80. https://doi.org/10.4028/www.scientific.net/KEM.850.76

Karmarkar, A.; Chauhan, S.S.; Modak, J.M.; Chanda, M. 2007. Mechanical properties of wood-fiber reinforced polypropylene composites: Effect of a novel compatibilizer with isocyanate functional group. Compos Part A Appl Sci Manuf 38(2): 227-233. https://doi.org/10.1016/j.compositesa.2006.05.005

Khali, D.P.; Kumar, A.; Shrivastava, P. 2017. Plywood for general purpose (interior grade) of selected different progenies of Melia composita Benth. J Indian Acad Wood Sci 14(2): 139–145. https://doi.org/10.1007/s13196-017-0199-5

Kumar, S.; Kelkar, B.U.; Mishra, A.K.; Jena, S.K. 2018. Variability in physical properties of plantation-grown progenies of Melia composita and determination of a kiln-drying schedule. J For Res 29(5): 1435–1442. https://doi.org/10.1007/s11676-017-0527-z

Kurt, R.; Cil, M. 2012. Effects of Press Pressure on Glue Line Thickness and properties of laminated veneer lumber glued with melamine urea formaldehyde adhesive. Bioresources 7(3): 4341-4349. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_07_3_4341_Kurt_Cil_Press_Pressure_Glueline_Melamine_Adhesive

Li, K.; Geng, X. 2005. Formaldehyde‐free wood adhesives from decayed wood. Macromol Rapid Commun 26(7): 529-532. https://doi.org/10.1002/marc.200400594

Lustosa, E.C.D.B.; Del Menezzi, C.H.S.; De Melo, R.R.D. 2015. Production and properties of a new wood laminated veneer/high-density polyethylene composite board. Mater Res 18(5): 994–999. https://doi.org/10.1590/1516-1439.010615

Makinen, M.; Kalliokoski, P.; Kangas, J. 1999. Assessment of total exposure to phenol-formaldehyde resin glue in plywood manufacturing. Int Arch Occup Environ Health 72(5): 309–314. https://doi.org/10.1007/s004200050380

Matuana, L.M.; Balatinecz, J.J.; Park, C.B. 1998. Effect of surface properties on the adhesion between PVC and wood veneer laminates. Polym Eng Sci 38(5): 765–773. https://doi.org/10.1002/pen.10242

Menezzi del, C.H.S.; Nakamura, A.; Queiroz, F.; Couto, M. 2016. Preliminary evaluation of laminated veneer lumber bonded with expanded polystyrene. Eur J Wood Prod 74(5): 759-761. https://doi.org/10.1007/s00107-016-1023-4

Nandi, A.; Kale, A.; Raghu, N.; Aggarwal, P.K.; Chauhan, S.S. 2013. Effect of concentration of coupling agent on mechanical properties of coir-polypropylene composite. J Indian Acad Wood Sci 10(1): 62–67. https://doi.org/10.1007/s13196-013-0094-7

Poletto, M. 2017. Polypropylene-based wood-plastic composites: Effect of using a coupling agent derived from a renewable resource. Maderas-Cienc Tecnol 19(3): 265–272. https://doi.org/10.4067/S0718-221X2017005000022

Prakash, V.; Uday, D.N.; Sujatha, D.; Kiran, M.C; Narasimhamurthy. 2019. Laminated Veneer Lumber ( LVL ) from Fast Growing Plantation Timber Species Meliadubia. Int J Sci Res 8(4): 1721–1723. https://www.ijsr.net/archive/v8i4/ART20197006.pdf

Raya, I.; Ramdani, N.; Karim, A.; Muin, M. 2018. Modifying Of Particle Boards From Rice Husk and Pinus Merkusii Sawdust And Using Soybean Waste Waters Based Adhesive. J Phys Conf Ser IOP 979(1): 012057. https://doi.org/10.1088/1742-6596/979/1/012057

Rojanathavorn, C.; Paveenchana, C.; Rungseesantivanon, W.; Siriwatwechakul, W. 2014. Wood Plastic Composites (WPC) from Iron wood (Xylia xylocarpus) for wood floor application. In World Congress on Advance in Civil, Environmental, and Material Research. Busan, Korea. http://www.i-asem.org/publication_conf/acem14/4.EST/T3D.3.ES307_780F.pdf

Sharma, S.K.; Shukla, S.R.; Sethy, A.K. 2019. Comparative studies of important wood quality parameters of Melia dubia Cav. of different age groups for finding their suitability in various applications. J Indian Acad Wood Sci 16(1): 44–50. https://doi.org/10.1007/s13196-019-00234-z

Song, W.; Wei, W.; Wang, D.; Zhang, S. 2017. Preparation and properties of new plywood composites made from surface modified veneers and polyvinyl chloride films. Bioresources 12(4): 8320-8339. https://bioresources.cnr.ncsu.edu/wp-content /uploads /2017/09 /BioRes_12_4_8320_Song_WWZ_Prep_Props_Plywood_Composite_Surface_Modif_Veneers_PVC_11945.pdf

Tenorio, C.; Moya, R.; Munoz, F. 2011. Comparative study on physical and mechanical properties of laminated veneer lumber and plywood panels made of wood from fast-growing Gmelina arborea trees. J Wood Sci 57(2): 134–139. https://doi.org/10.1007/s10086-010-1149-7

Uday, D.N; Sujatha, D.; Pandey, C.N. 2011. Suitability of Melia dubia (malabar neem wood) for plywood manufacture. J Indian Acad Wood Sci 8(2): 207–211. https://doi.org/10.1007/s13196-012-0048-5

Downloads

Published

2023-06-27

How to Cite

Arya, S. ., Chauhan, S. ., Kumar, R. ., & Kelkar, B. . (2023). Wood polymer composite bonded veneer based hybrid composites. Maderas-Cienc Tecnol, 25, 1–12. https://doi.org/10.4067/s0718-221x2023000100440

Issue

Section

Article