Improving the thermal performance of schools in the High Andean Region of Peru. The case of “PRONIED’S prefabricated frost-type modular classrooms”

Authors

  • Martin Wieser Pontificia Universidad Católica del Perú (PUCP), Lima, Perú. https://orcid.org/0000-0002-4556-3507
  • Antonio Garaycochea Pontificia Universidad Católica del Perú (PUCP), Lima, Perú.
  • Varinia Prada Pontificia Universidad Católica del Perú (PUCP), Lima, Perú. https://orcid.org/0000-0002-5847-7552

DOI:

https://doi.org/10.22320/07190700.2023.13.01.05

Keywords:

bioclimatic design, passive strategies, thermal performance, energy simulation

Abstract

Faced with the qualitative and quantitative deficit of educational infrastructure in Peru’s rural high Andean areas, in recent years the Peruvian State has been investing in and supporting modular solutions, seeking efficiency in the construction processes. The specific proposal, with special emphasis on bioclimatic design, is the "Prefabricated Frost-type Modular Classroom". However, users have been expressing discomfort with these new facilities. This study shows the measurement process carried out on a built module, which allowed calibrating and validating the model using simulation software, to propose improvements in the design that may contribute to future constructions. Taking the adaptive thermal comfort model as a reference, it was confirmed that indoor temperatures were below thermal comfort limits in the early hours of the morning and well above them close to noon, by around 6 ºC and 7 ºC respectively. With the application of complementary bioclimatic strategies, it was possible to considerably improve indoor thermal conditions, although not enough to reach comfort early in the morning. This is because the night-time outdoor temperatures are very low, the building is uninhabited all night long, there is no thermal mass in the envelope, and there are no active solar systems or mechanical air conditioning.

Downloads

Download data is not yet available.

Author Biographies

Martin Wieser, Pontificia Universidad Católica del Perú (PUCP), Lima, Perú.

PhD in Research Areas in Energy and Environment in Architecture.
Senior Lecturer, Department of Architecture, Researcher at the Center for Research on Architecture and the City (CIAC).

Antonio Garaycochea, Pontificia Universidad Católica del Perú (PUCP), Lima, Perú.

Architect.
Researcher at the Center for Research on Architecture and the City (CIAC).

Varinia Prada, Pontificia Universidad Católica del Perú (PUCP), Lima, Perú.

Architect.
Researcher at the Center for Research on Architecture and the City (CIAC).

 

References

ASHRAE Standard (2017). Standard 55-2017 Thermal environmental conditions for human occupancy. Ashrae: Atlanta, GA, USA.

CHUI BETANCUR, H. N., HUAQUISTO RAMOS, E., QUISPE, G. B., CANALES GUTIÉRREZ, Á. & CALATAYUD MENDOZA, A. P. (2022). Características de la arquitectura vernácula en zonas altoandinas de Perú. Una contribución al estudio del mundo rural. Cuadernos de Vivienda y Urbanismo, 15, 21-21. DOI: https://doi.org/10.11144/Javeriana.cvu15.cavz

BOS, M. S., GANIMIAN, A. J., VEGAS, E. & ALFONSO M. (2014). Brief Nº13: Perú en PISA 2012 logros y desafíos pendientes. BID. Retrieved from: https://repositorio.minedu.gob.pe/handle/20.500.12799/3814

BURGA, J. (2010). Arquitectura vernácula peruana: un análisis tipológico. Colegio de Arquitectos del Perú.

GENG, Y., JI, W., LIN, B. & ZHU, Y. (2017). The impact of thermal environment on occupant IEQ perception and productivity. Building and Environment, 121, 158-167. DOI: https://doi.org/10.1016/j.buildenv.2017.05.022

GIVONI, B. (1992). Comfort, climate analysis and building design guidelines. Energy and buildings, 18(1), 11-23. DOI: https://doi.org/10.1016/0378-7788(92)90047-K

HAVES, P., RAVACHE, B., FERGADIOTTI, A., KOHLER, C. & YAZDANIAN, M. (2019). Accuracy of HVAC Load Predictions: Validation of EnergyPlus and DOE-2. Using an Instrumented Test Facility. In Proceedings of Building Simulation. DOI: https://doi.org/10.26868/25222708.2019.211268

KÜKRER, E. & ESKIN, N. (2021). Effect of design and operational strategies on thermal comfort and productivity in a multipurpose school building. Journal of Building Engineering, 44, 102697. DOI: https://doi.org/10.1016/j.jobe.2021.102697

MANZANO-AGUGLIARO, F., MONTOYA, F. G., SABIO-ORTEGA, A. & GARCÍA-CRUZ, A. (2015). Review of bioclimatic architecture strategies for achieving thermal comfort. Renewable and Sustainable Energy Reviews, 49, 736-755. DOI: https://doi.org/10.1016/j.rser.2015.04.095

MAZZEO, D., MATERA, N., CORNARO, C., OLIVETI, G., ROMAGNONI, P. & DE SANTOLI, L. (2020). EnergyPlus, IDA ICE and TRNSYS predictive simulation accuracy for building thermal behaviour evaluation by using an experimental campaign in solar test boxes with and without a PCM module. Energy and Buildings, 212, 109812. DOI: https://doi.org/10.1016/j.enbuild.2020.109812

MOLINA, J. R., LEFEBVRE, G., ESPINOZA, R., HORN, M. & GÓMEZ, M. M. (2021). Bioclimatic approach for rural dwellings in the cold, high Andean region: A case study of a Peruvian house. Energy and Buildings, 231, 110605. DOI: https://doi.org/10.1016/j.enbuild.2020.110605

Programa Nacional de Infraestructura Educativa, PRONIED del Ministerio de Educación, MINEDU (2021). Ficha de Homologación de Módulo Prefabricado Aula tipo Heladas. Retrieved from: https://www.gob.pe/institucion/pronied/campa%C3%B1as/4440-fichas-de-homologacion-de-modulos-prefabricados

SÁEZ, E., & CANZIANI, J. (2020). Vernacular architecture and cultural landscapes in the Sondondo Valley (Peru). The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 44(M1), 175-180. DOI: https://doi.org/10.5194/isprs-archives-XLIV-M-1-2020-175-2020

SZOKOLAY, S. (2012). Introduction to architectural science. Routledge. DOI:

https://doi.org/10.4324/9780080473130

TORRES PUÑEZ, C. M. (2021). Construyendo la educación: infraestructura como determinante del rendimiento académico en el Perú 2000-2015. [Thesis for the degree of Economist, Universidad de Lima]. Retrieved from: https://hdl.handle.net/20.500.12724/13874

TREMBLAY, J. C. & AINSLIE, P. N. (2021). Global and country-level estimates of human population at high altitude. Proceedings of the National Academy of Sciences, 118(18), e2102463118. DOI: https://doi.org/10.1073/pnas.2102463118

VIDAL, J. P. (2014). Las ocho regiones naturales del Perú. Terra Brasilis Revista da Rede Brasileira de História da Geografia e Geografia Histórica, (3). DOI: https://doi.org/10.4000/terrabrasilis.1027

WARGOCKI, P., PORRAS-SALAZAR, J. A. & CONTRERAS-ESPINOZA, S. (2019). The relationship between classroom temperature and children’s performance in school. Building and Environment, 157, 197-204. DOI: https://doi.org/10.1016/j.buildenv.2019.04.046

WIESER, M., RODRÍGUEZ-LARRAÍN, S. & ONNIS, S. (2021). Bioclimatic strategies for high altitude tropical cold climate. Prototype validation in Orduña, Puno, Perú. Estoa. Revista de la Facultad de Arquitectura y Urbanismo de la Universidad de Cuenca, 10(19), 09-19. DOI: https://doi.org/10.18537/est.v010.n019.a01

ZOMORODIAN, Z. S., TAHSILDOOST, M. & HAFEZI, M. (2016). Thermal comfort in educational buildings: A review article. Renewable and Sustainable Energy Reviews, 59, 895-906. DOI: https://doi.org/10.1016/j.rser.2016.01.033

Published

2023-06-30

How to Cite

Wieser, M., Garaycochea, A., & Prada, V. (2023). Improving the thermal performance of schools in the High Andean Region of Peru. The case of “PRONIED’S prefabricated frost-type modular classrooms”. Sustainable Habitat, 13(1), 56–67. https://doi.org/10.22320/07190700.2023.13.01.05

Issue

Section

Artículos