Examining the efficiency of mechanic/enzymatic pretreatments in micro/nanofibrillated cellulose production

  • Ayhan Tozluoğlu
  • Bayram Poyraz
  • Zeki Candan

Abstract

There is still a need to improve the production sequences of micro fibrillated and nano fibrillated celluloses to obtain more economic and better quality products. The aim of this study was to improve the production efficiency and quality of micro fibrillated and nano fibrillated celluloses by examining the enzyme (xylanase endo-1,4-) employed in pretreatment sequences. Fairly homogeneous nano fibrillated cellulose with a width of 35 ± 12 nm was produced in this study. Sequences employed to produce micro fibrillated and nano fibrillated celluloses decreased the cellulose crystallinity of bleached kraft pulp and lower total crystalline index and lateral order index values were observed for micro fibrillated and nano fibrillated celluloses in FTIR examinations. Lower crystallinities were also defined by 13C-NMR (46.2 ppm), which was substantiated with C6 peaks in the amorphous domain. Sequences to produce micro fibrillated and nano fibrillated celluloses resulted in shorter fiber dimensions with less ordered cellulose structure leading lower thermal degradation that reveal main polymer chain source from cellulose units. Dynamic mechanical thermal analysis results showed that the initial and maximum storage modulus of the nano fibrillated and micro fibrillated celluloses films were improved by 114% and 101%, respectively. The storage modulus of micro fibrillated and nano fibrillated celluloses films were 4.96 GPa and 2.66 GPa at temperature of 235°C, respectively.

References

Abraham, E.; Deepa, B.; Pothen, L. A.; Cintil, J.; Thomas, S.; John, M. J.; Anandjiwala, R.; Narine, S. S. 2013. Environmental friendly method for the extraction of coir fibre and isolation of nanofibre. Carbohydr Polym 92(2):1477-1483.

Agbor, V. B.; Cicek, N.; Sparling, R.; Berlin, A.; Levin, D. B. 2011. Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29(6):675-685.

Ang, T. N.; Ngoh, G. C.; Chua, A. S. M.; Lee, M. G. 2012. Elucidation of the effect of ionic liquid pretreatment on rice husk via structural analyses. Biotechnol Biofuels 5(1):67-77.

Ankerfors, M.; Lindström, T.; Henriksson, G. 2009. Method for the manufacture of microfibrillated cellulose. US Pat. 20090221812 A1.

Arjmandi, R.; Hassan, A.; Eichhorn, S.; Mohamad Haafiz, M. K.; Zakaria, Z.; Tanjung, F. 2015. Enhanced ductility and tensile properties of hybrid montmorillonite/cellulose nanowhiskers reinforced polylactic acid nanocomposites. J Mater Sci 50(8):3118-3130.

Ayata, U. 2008. A research of eucalyptus (Eucalyptus camaldulensis and Eucalyptus grandis) wood properties and their use in the paper industry. Master Thesis, Science Institute of Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey.

Barroca, M. J. M. C.; Simoes, R. M. S.; Castro, J. A. A. M. 2001. Kinetics of chlorine dioxide delignification of a hardwood pulp. Appita J 54:190-195.

Berca, M.; Navard, P. 2000. Shear dynamics of aqueous suspensions of celluose whiskeys. Macromolecules 33(16):6011-6016.

Bismarck, A.; Mishra, S.; Lampke, T. 2005. Plant fibres as reinforcement for green composites Natural Fibres, Biopolymers, and Biocomposites. Ed: Mohanty, A. K.; Misra, M.; Drzal, L. T. (Boca Raton: CRC Press) p 37-108.

Bulota, M. 2012. Deformation and fracture mechanisms in nanocellulose reinforced composites. PhD Thesis, Aalto University, School of Chemical Technology, Department of Forest Products Technology, Helsinki, Finland.

Carrilo, F.; Colom, X.; Sunol, J.; Saurina, J. 2004. Structural FTIR analysis and thermal characterization of lyocell and viscose-type fibers. Eur Polym J 40(9):2229-2234.

Chang, X. F.; Olson, J. A.; Beatson, R. P. 2012. A comparison between the effects of ozone and alkaline peroxide treatments on TMP properties and subsequent low consistency refining. BioRes 7(1):99-111.

Chen, X.; Kuhn, E.; Wang, W.; Park, S.; Flanegan, K.; Trass, O.; Tenlep, L.; Tao, L.; Tucker, M. 2013. Comparison of different mechanical refining technologies on the enzymatic digestibility of low severity acid pretreated corn stover. Bioresour Technol 147:401-408.

Dri, F. L.; Hector, L. G.; Moon, R. J.; Zavattieri, P. D. 2013. Anisotropy of the elastic properties of crystalline cellulose Iβ from first principles density functional theory with Van der Waals interactions. Cellulose 20(6): 2703-2718.

Duchesne, I.; Hult, E.; Molin, U., Daniel, G.; Iversen, T.; Lennholm, H. 2001. The influence of hemicellulose on fibril aggregation of kraft pulp fibres as revealed by FE-SEM and CP/MAS 13C-NMR. Cellulose 8(2):103-101.

Dufresne, A. 2012. Nanocellulose: From nature to high performance tailored materials. Grenoble: Walter de Gruyter, (Chapter 6).

Habibi, Y.; Lucia, L. A.; Rojas, O. J. 2010. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479-3500.

Hettrich, K.; Pinnow, M.; Volkert, B.; Passauer, L.; Fischer, S. 2014. Novel aspects of nanocellulose. Cellulose 21(4):2479–2488.

Honorato, C.; Kumar, V.; Liu, J.; Koivula, H.; Xu, C. 2015. Transparent nanocellulose pigment composite films. J Mater Sci 50(22):7343-7352.

Islam, M. N. 2004. Effect of chemical charges in cooking and their effectiveness on pulp bleaching. J Sci Ind Res 63:522-526.

Jia, X.; Chen, Y.; Shi, C.; Ye, Y.; Abid, M.; Jabbar, S.; Wang, P.; Zeng, X.; Wu, T. 2014. Rheological properties of an amorphous cellulose suspension. Food Hydrocolloid 39:27-33.

Jiang, F.; Hsieh, Y. L. 2013. Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr Polym 95(1):32-40.

Jonoobi, M.; Niska, K. O.; Harun, J.; Shakeri, A.; Misra, M. 2009. Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers. BioRes 4:626-639.

Khalil, H. P. S. A.; Bhat, A. H.; Yusra, A. F. I. 2012. Green composites from sustainable cellulose nanofibrils: A review. Carbohydr Polym 87(2):963-979.

Kim, U-J.; Eom, S. H.; Wada, M. 2010. Thermal decomposition native cellulose: Influence on crystallite size. Polym Degrad Stab 95(5):778-781.

Kolakovic, R. 2013. Nanofibrillar cellulose in drug delivery. PhD Thesis. Division of Pharmaceutical Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.

Kord, B.; Malekian, B.; Yousefi, H.; Najafi, A. 2016. Preparation and characterization of nanofibrillated Cellulose/Poly (Vinyl Alcohol) composite films. Maderas Cienc Tecnol 18(4): 743-752.

Lavoine, N.; Desloges, I.; Dufresne, A.; Bras, J. 2012. Microfibrillated cellulose-its barrier properties and applications in cellulosic materials: A review. Carbohydr Polym 90(2):735-764.

Lee, H. V.; Hamid, S. B. A.; Zain, S. K. 2014. Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. Scientific World J 2014:1-20.

Leitner, J.; Hinterstoisser, B.; Wastyn, M.; Keckes, J.; Gindl, W. 2007. Sugar beet cellulose nanofibril-reinforced composites. Cellulose 14(5):419-425.

Li, W.; Wang, R.; Liu, S. 2011. Nanocrystalline cellulose prepared from softwood kraft pulp via ultrasonic-assisted acid hydrolysis. BioRes 6:4271-4281.

Luduena, L.; Fasce, D.; Alvarez, A.; Stefani, I. P. 2011. Nanocellulose from rice husk following alkaline treatment to remove silica. BioRes 6(2):1440-1453.

Maheswari, C. U.; Reddy, K. O.; Muzenda, E.; Guduri, B. R.; Rajulu, A. V. 2012. Extraction and characterization of cellulose microfibrils from agricultural residue-Cocosnucifera L.. Biomass Bioenerg 46:555-563.

Mandal, A.; Chakrabrty, D. 2011. Isolation of nanocellulose from waste sugarcane bagasse and its characterization. Carbohydr Polym 86(3):1291-1299.

Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. 2011. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994.

Moussaouiti, M. E.; Barcha, B.; Alves, E. F.; Francis, R. C. 2012. Kraft pulping characteristics of three Moroccan eucalypti. Part 1. Physical and chemical properties of woods and pulps. BioRes 7(2):1558-1568.

Newman, R. H. 2004. Carbon-13 NMR evidence for cocrystallization of cellulose as a mechanism for hornification of bleasched kraft pulp. Cellulose 11(1):45-52.

Ng, H. M.; Sin, L. T.; Tee, T. T.; Bee, S. T.; Hui, D.; Low, C. Y.; Rahmat, A. R. 2015. Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Compos Part B Eng 75:176-200.

Oh, S. Y.; Yoo, D. I.; Shin, Y.; Seo, G. 2005. FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr Res 340(3):417-428.

Pääkko, M.; Ankerfors, M.; Kosonen, H.; Nykänen, A.; Ahola, S.; Österberg, M.; Ruokolainen, J.; Laine, J.; Larsson, P. T.; Ikkala, O.; Lindström, T. 2007. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934-1941.

Park, S.; Johnson, D. K.; Claudia, I. I.; Parilla, P. A.; Davis, M. F. 2009. Measuring the crystallinity index of cellulose by solid state 13C nuclear magnetic resonance. Cellulose, 16(4):641-647.

Pérez, J.; Muñoz-Dorado, J.; De La Rubia, T.; Martínez, J. 2002. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview. Int Microbiol 5(2):53-63.

Poletto, M.; Pistor, V.; Zattera, A. J. 2014. Structural characteristics and thermal properties of native cellulose. Materials 7:6105-6119.

Popescu, M. C.; Popescu, C. M.; Lisa, G.; Sakata, Y. 2011. Evaluation of morphological and chemical aspects of different wood species by spectroscopy and thermal methods. J Mol Struct 988(1-3):65-72.

Poyraz, B.; Tozluoğlu, A.; Candan, Z.; Demir, A.; Yavuz, M. 2017. Influence of PVA and silica on chemical, thermo-mechanical and electrical properties of Celluclast-treated nanofibrillated cellulose composites. Int J Biol Macromol 104: 384-392.

Proniewicz, L. M.; Paluszkiewicz, C.; Weselucha-Birczynska, A.; Majcherczyk, H.; Baranski, A.; Konieczna, A. 2001. FT-IR and FT-Raman study hydrothermally degradated cellulose. J Mol Structure 596(1-3):163- 69.

Saito, T.; Kimura, S.; Nishiyama, Y.; Isogai, A. 2007. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8(8):2485-2491.

Shimazaki, Y.; Miyazaki, Y.; Takezawa, Y.; Nogi, M.; Abe, K.; Ifuku, S.; Yano, H. 2007. Excellent thermal conductivity of transparent cellulose nanofiber/epoxy resin nanocomposites. Biomacromolecules 8(9):2976–2978.

Siro, I.; Plackett, D. 2010. Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose 17(3):459-494.

Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. 2004. Determination of structural carbohydrates and lignin in biomass. Biomass Analysis Technology Team Laboratory Analytical Procedures. National Renewable Research Laboratory, Golden, CO, USA.

Spence, K. L.; Venditti, R. A.; Rojas O. J.; Habibi, Y.; Pawlak, J. J. 2011. A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18(4):1097-1111.

Spiridon, I.; Teaca, C. A.; Bodirlau, R. 2010. Structural changes evidenced by FTIR spectroscopy in cellulosic materials after pre-treatment with ionic liquid and enzymatic hydrolysis. BioRes 6(1):400-413.

Syverud, K.; Stenius, P. 2008. Strength and barrier properties of MFC films. Cellulose 16:75–85.

Taniguchi, T.; Okamura, K. 1998. New films produced from microfibrillated natural fibers. Polym Int 47(3):291-294.

Viana, L. C.; De Muniz, G. I. B.; Hein, P. R. G.; Magalhães, W. L. E.; Carneiro, M. E. 2016. NIR spectroscopy can evaluate the crystallinity and the tensile and burst strengths of nanocellulosic films. Maderas Cienc Tecnol 18(3): 493-504.

Virtanen, S.; Vartianen, J.; Setala, H.; Tammelin, T.; Vuoti, S. 2014. Modified nanofibrillated cellulose–polyvinyl alcohol films with improved mechanical performance. RSC Adv 4:11343-11350.

Yang, H.; Yan, R.; Chen, H.; Lee, D. H.; Zheng, C. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12-13):1781-1788.

Zhang, Z. 2013. Chemical functionalization of nanofibrillated cellulose by alkoxysilanes: application to the elaboration of composites and foams. PhD Thesis. Université Bordeaux, Bordeaux, France.

Zimmermann, T.; Bordeanu, N.; Strub, E. 2010. Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr Polym 79:1086-1093.

Zoppi, R. A.; Gonçalves, M. C. 2002. Hybrids of cellulose acetate and sol–gel silica: Morphology, thermomechanical properties, water permeability, and biodegradation evaluation. J Appl Sci 84(12): 2196-2205.

Zuckerstätter, G.; Schild, G.; Wollboldt, P.; Röder, T.; Weber, H.; Sixta, H. 2009. The elucidation of cellulose supramolecular structure by 13C CP-MAS NMR. LenzingerBerichte 87:38-46.
Published
2017-10-26
How to Cite
TOZLUOĞLU, Ayhan; POYRAZ, Bayram; CANDAN, Zeki. Examining the efficiency of mechanic/enzymatic pretreatments in micro/nanofibrillated cellulose production. Maderas. Ciencia y Tecnología, [S.l.], v. 20, n. 1, oct. 2017. ISSN 0718-221X. Available at: <http://revistas.ubiobio.cl/index.php/MCT/article/view/3010>. Date accessed: 18 nov. 2017.