Sampling sufficiency for mechanical properties of wood

Authors

  • Arthur B. Aramburu
  • Darci A. Gatto
  • Rafael Beltrame
  • Rafael A. Delucis

Keywords:

Monte Carlo simulation, resampling, sampling sufficiency, wood stiffness, wood strength

Abstract

Based on most recently published studies, there is a large variability in both the mechanical properties of wood and sample sizes selected to evaluate them. This study aims to define sampling sufficiency for some mechanical properties of wood, which were bending strength, bending modulus, compressive strength, compressive modulus, hardness, and shear strength. The mechanical tests were carried out according to the ASTM D143 on wood samples cut from clonal Eucalyptus planted in southern Brazil. Sampling sufficiency was determined by an intensive computational method based on resampling of original data using Monte Carlo simulations. The experimental tests data conformed to the normal distribution and most of the obtained sufficient sample sizes determined by Monte Carlo simulation were above those sample sizes used in most already published studies. Furthermore, properties related to wood stiffness presented smaller variabilities than their respective properties associated with wood strength, leading to smaller sample sizes for the former cases.

Downloads

Download data is not yet available.

References

Adcock, C.J. 1997. Sample size determination: A review. J R Stat Soc Ser D Stat 46: 261–283. https://doi.org/10.1111/1467-9884.00082

Amer, M.; Kabouchi, B.; Rahouti, M.; Famiri, A.; Fidah, A.; El Alami, S. 2019. Influence of moisture content on the axial resistance and modulus of elasticity of clonal eucalyptus wood. Mater Today Proc 13: 562–568. https://doi.org/10.1016/j.matpr.2019.04.014

Amer, M.; Kabouchi, B.; Rahouti, M.; Famiri, A.; Fidah, A.; El Alami, S. 2021. Mechanical Properties of Clonal Eucalyptus Wood. Int J Thermophys 42: 1–15. https://doi.org/10.1007/s10765-020-02773-x

American Society for Testing and Materials. 2021. Standard Test Methods for Small Clear Specimens of Timber. ASTM D143-21:ASTM. West Conshohocken, PA, USA. https://doi.org/10.1520/D0143-21

American Society for Testing and Materials. 2010. Standard Practice for Sampling Forest Trees for Determination of Clear Wood Properties. ASTM D5536-94: ASTM. West Conshohocken, PA, USA. https://doi.org/10.1520/D5536-94R10

Bao, F.C.; Jiang, Z.H.; Jiang, X.M.; Lu, X.X.; Luo, X.Q.; Zhang, S.Y. 2001. Differences in wood properties between juvenile wood and mature wood in 10 species grown in China. Wood Sci Technol 35: 363–375. https://doi.org/10.1007/s002260100099

Carrillo, A.; Garza, M.; De Jesús Nañez, M.; Garza, F.; Foroughbakhch, R.; Sandoval, S. 2011. Physical and mechanical wood properties of 14 timber species from Northeast Mexico. Ann For Sci 68: 675–679. https://doi.org/10.1007/s13595-011-0083-1

Crespo, J.; Majano-Majano, A.; Lara-Bocanegra, A.J.; Guaita, M. 2020. Mechanical properties of small clear specimens of Eucalyptus globulus labill. Materials 13. https://doi.org/10.3390/ma13040906

DePatta Pillar, V. 1998. Sampling sufficiency in ecological surveys. Abstr Bot 22: 37–48. https://www.jstor.org/stable/43518936?seq=1

Dimauro, C.; Macciotta, N.P.P.; Rassu, S.P.G.; Patta, C.; Pulina, G. 2009. A bootstrap approach to estimate reference intervals of biochemical variables in sheep using reduced sample sizes. Small Rumin Res 83: 34–41. https://doi.org/10.1016/j.smallrumres.2009.03.004

Dünisch, O.; Richter, H.G.; Koch, G. 2010. Wood properties of juvenile and mature heartwood in Robinia pseudoacacia L. Wood Sci Technol 44: 301–313. https://doi.org/10.1007/s00226-009-0275-0

Dwivedi, A.K.; Mallawaarachchi, I.; Alvarado, L.A. 2017. Analysis of small sample size studies using nonparametric bootstrap test with pooled resampling method. Stat Med 36: 2187–2205. https://doi.org/10.1002/sim.7263

Bros, W.E.; Cowell, B.C. 1987. A technique for optimizing sample size (replication). J Exp Mar Bio Ecol 114: 63–71. https://doi.org/10.1016/0022-0981(87)90140-7

Edwards, D.J.; Guess, F.M.; Young, T.M. 2011. Improved estimation of the lower percentiles of material properties. Wood Sci Technol 45: 533–546. https://doi.org/10.1007/s00226-010-0346-2

Ferreira, M.D.; Melo, R.R; Tonini, H.; Pimenta, S.; Gatto, D.A.; Beltrame, R.; Stangerlin, D.M. 2019. Physical–mechanical properties of wood from a eucalyptus clone planted in an integrated crop-livestock-forest system. Int Wood Prod J 11: 12–19. https://doi.org/10.1080/20426445.2019.1706137

Fieberg, J.R.; Vitense, K.; Johnson, D.H. 2020. Resampling-based methods for biologists. PeerJ 8:e9089. https://doi.org/10.7717/peerj.9089

Ghorbani-Kookandeh, M.; Taghiyari, H.R.; Siahposht, H. 2014. Effects of heat treatment and impregnation with zinc-oxide nanoparticles on physical, mechanical, and biological properties of beech wood. Wood Sci Technol 48: 727–736. https://doi.org/10.1007/s00226-014-0627-2

Green, D.W. 2001. Wood: Strength and Stiffness. In: Encyclopedia of Materials: Science and Technology. Buschow, K.H.J. Cahn, R.W (Eds). Elsevier, Oxford, United Kingdom. https://doi.org/10.1016/B0-08-043152-6/01766-6

Hein, P.R.G.; Chaix, G.; Clair, B.; Brancheriau, L.; Gril, J. 2016. Spatial variation of wood density, stiffness and microfibril angle along Eucalyptus trunks grown under contrasting growth conditions. Trees - Struct Funct 30: 871–882. https://doi.org/10.1007/s00468-015-1327-8

Kess, T.; El-Kassaby, Y.A. 2014. Jackknife resampling for precision measurement of direct gene flow estimates. Scand J For Res 29: 707–712. https://doi.org/10.1080/02827581.2014.965196

Kothiyal, V. 2014. Intra clonal variations of specific gravity and selected mechanical properties of Eucalyptus tereticornis Sm. J Indian Acad Wood Sci 11: 122–133. https://doi.org/10.1007/s13196-014-0127-x

Kretschmann, D.E. 1991. Feasibility study of a modified ASTM D 143 block shear specimen for thin material. Forest Prod. J 41: 37–39. https://www.fpl.fs.fed.us/documnts/pdf1991/krets91b.pdf

Missio, A.L.; Bayer, F.M.; Gatto, D.A.; de Cademartori, P.H.G. 2014. Suficiência amostral das características anatômicas da madeira usando o método de reamostragem. Acta Sci - Technol 36: 413–420. https://doi.org/10.4025/actascitechnol.v36i3.20335

Mohebby, B.; Kevily, H.; Kazemi-Najafi, S. 2014. Oleothermal modification of fir wood with a combination of soybean oil and maleic anhydride and its effects on physico-mechanical properties of treated wood. Wood Sci Technol 48: 797–809. https://doi.org/10.1007/s00226-014-0640-5

Moraisa, M.C.; Pereira, H. 2007. Heartwood and sapwood variation in Eucalyptus globulus Labill. trees at the end of rotation for pulpwood production. Ann For Sci 64: 665–671. https://doi.org/10.1051/forest:2007045

Papadopoulos, C.E.; Yeung, H. 2001. Uncertainty estimation and Monte Carlo simulation method. Flow Meas Instrum 12: 291–298. https://doi.org/10.1016/S0955-5986(01)00015-2

Rapp, A.O.; Brischke, C.; Welzbacher, C.R. 2007. The influence of different soil substrates on the service life of Scots pine sapwood and oak heartwood in ground contact. Wood Mater Sci Eng 2: 15–21. https://doi.org/10.1080/17480270701273015

Salca, E.A.; Hiziroglu, S. 2014. Evaluation of hardness and surface quality of different wood species as function of heat treatment. Mater Des 62: 416–423. https://doi.org/10.1016/j.matdes.2014.05.029

Santos, J.A. 2000. Mechanical behaviour of Eucalyptus wood modified by heat. Wood Sci Technol 34: 39–43. https://doi.org/10.1007/s002260050006

Shimodaira, H. 2016. Cross-validation of matching correlation analysis by resampling matching weights. Neural Networks 75: 126–140. https://doi.org/10.1016/j.neunet.2015.12.007

Storck, L.; Fiorin, R.A.; Filho, A.C.; Guedes, J.V.C. 2012. A sampling procedure for quantifying mites in soybeans. Exp Appl Acarol 57: 117–126. https://doi.org/10.1007/s10493-012-9547-8

Svensson, S.; Toratti, T. 2002. Mechanical response of wood perpendicular to grain when subjected to changes of humidity. Wood Sci Technol 36: 145–156. https://doi.org/10.1007/s00226-001-0130-4

Taghiyari, H.R. 2011. Study on the effect of nano-silver impregnation on mechanical properties of heat-treated Populus nigra. Wood Sci Technol 45: 399–404. https://doi.org/10.1007/s00226-010-0343-5

Trockenbrodt, M.; Misalam, K.; Lajanga, J. 1999. Physical and elasto-mechanical wood properties of young Sentang (Azadirachta excelsa) planted in Sabah, Malaysia. Holz Roh Werkst 57: 210–214. https://doi.org/10.1007/s001070050043

Wang, L.; Yu, F. 2020. Jackknife resampling parameter estimation method for weighted total least squares. Commun Stat - Theory Methods 49:5810–5828. https://doi.org/10.1080/03610926.2019.1622725

Wessels, C.B.; Crafford, P.L.; Du Toit, B.; Grahn, T.; Johansson, M.; Lundqvist, S.O.; Sall, H.; Seifert, T. 2016. Variation in physical and mechanical properties from three drought tolerant Eucalyptus species grown on the dry west coast of Southern Africa. Eur J Wood Prod 74: 563–575. https://doi.org/10.1007/s00107-016-1016-3

Zhang, T.; Tu, D.; Peng, C.; Zhang, X. 2015. Effects of heat treatment on physical-mechanical properties of Eucalyptus regnans. BioResources 10: 3531–3540. https://doi.org/10.15376/biores.10.2.3531-3540

Downloads

Published

2023-01-08

How to Cite

B. Aramburu, A. ., Gatto, D. A. ., Beltrame, R. ., & A. Delucis, R. . (2023). Sampling sufficiency for mechanical properties of wood. Maderas-Cienc Tecnol, 25. Retrieved from https://revistas.ubiobio.cl/index.php/MCT/article/view/5763

Issue

Section

Article

Most read articles by the same author(s)