Effects of thermal treatment and weathering in the resistance against termites of a fast-growing pine wood

Authors

  • Ricardo Ripoll de Medeiros Universidade Federal de Pelotas. Postgraduate Program in Materials Science and Engineering. Technological Development Center. Laboratory of physical and mechanical properties of wood. Pelotas, Brazil.
  • Andrey Pereira Acosta Universidade Federal do Rio Grande do Sul. Postgraduate Program in Mining. Metallurgical and Materials Engineering. Technological Development Center. Porto Alegre, Brazil.
  • Kelvin Techera Barbosa Universidade Federal de Pelotas. Postgraduate Program in Materials Science and Engineering. Technological Development Center. Laboratory of physical and mechanical properties of wood. Pelotas, Brazil.
  • Rafael de Avila Delucis Universidade Federal de Pelotas. Postgraduate Program in Materials Science and Engineering. Technological Development Center. Laboratory of physical and mechanical properties of wood. Pelotas, Brazil.
  • Rafael Beltrame Universidade Federal de Pelotas. Postgraduate Program in Materials Science and Engineering. Technological Development Center. Laboratory of physical and mechanical properties of wood. Pelotas, Brazil.
  • Darci Alberto Gatto Universidade Federal de Pelotas. Postgraduate Program in Materials Science and Engineering. Technological Development Center. Laboratory of physical and mechanical properties of wood. Pelotas, Brazil.

DOI:

https://doi.org/10.22320/s0718221x/2024.12

Keywords:

Accelerated aging, artificial weathering, biodegradation, subterranean termites, thermal treatment

Abstract

Considering the limited existing literature on the combined effects of thermal treatment and weathering on the resistance of fast-growing pine wood to subterranean termites, this work deals with the resistance against subterranean termites of a thermally treated and weathered fast-growing pine wood. The pine wood was thermally treated at variable temperatures (c.a. 180 ºC, 200 ºC, and 220°C) for 2 h and then exposed to artificial weathering for three months. Chemical, hygroscopic, thermal, mechanical, colorimetric, biological, and morphological characteristics were evaluated. Compared to the untreated wood, as expected, the thermal treatments yielded wood parts with improved thermal, hygroscopic and colorimetric features. The thermal treatment also helped for retaining the thermal stability, volumetric hydrophobicity, color, and roughness of the pine wood exposed to the weathering. Previous changes ascribed to the weathering process did not affect the damages attributed to the termites attack, although that wood treated at 180 ºC presented an increased resistance against the termites deterioration.

Downloads

Download data is not yet available.

References

Acosta, A.P.; Diaz, R.H.; Amico, S.C.; Beltrame, R.; Barbosa, K.T.; Delucis, R.A.; Gatto, D.A. 2022. Effect of the temperature of the heat treatment of pine wood on subsequent in situ polymerization with poly(methyl methacrylate). Biofuels, Bioproducts and Biorefining 17(3): 499-509. https://doi.org/10.1002/ bbb.2451

Acosta, A.P.; Labidi, J.; Barbosa, K.T.; Cruz, N.; Delucis, R.A.; Gatto, D.A. 2020. Termite resistance of a fast-growing pine wood treated by in situ polymerization of three different precursors. Forests 11(8): e865. https://doi.org/10.3390/f11080865

Afzal, I.; Shinwari, Z.K.; Sikandar, S.; Shahzad, S. 2019. Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiological Research 221: 36-49. https://doi. org/10.1016/j.micres.2019.02.001

Aramburu, A.B.; Guidoti, A.B.; Schneider, D.M.; Cruz, N.D.; de Avila-Delucis, R. 2022. Colour of polyurethane foams filled with wood and wood derivatives exposed to two xylophagous fungi. Journal of Cellular Plastics 58(3): 541-553. https://doi.org10.1177/0021955X221074608

ASTM D143. 2017. Standard Test Methods for Small Clear Specimens of Timber. ASTM International. https://www.astm.org/d0143-94.html

Bak, M.; Molnár, F.; Németh, R. 2019. Improvement of dimensional stability of wood by silica nanoparticles. Wood Material Science & Engineering 14(1): 48-58. https://doi.org/10.1080/17480272.2018. 1528568

Boonstra, M.J.; Rijsdijk, J.F.; Sander, C.; Kegel, E.; Tjeerdsma, B.; Militz, H.; Van-Acker, J.; Stevens, M. 2006. Microstructural and physical aspects of heat treated wood. Part 1. Softwoods. Maderas. Ciencia y Tecnología 8(3): 193-208. https://revistas.ubiobio.cl/index.php/MCT/article/view/1469

Che, W.; Xiao, Z.; Wang, Z.; Nguyen, T.T.; Xie, Y. 2019. Enhanced Weathering Resistance of Radiata Pine Wood by Treatment with an Aqueous Styrene/Acrylic Acid Copolymer Dispersion. Journal of Wood Chemistry and Technology 39(6): 421-435. https://doi.org/10.1080/02773813.2019.1636824

de Peres, M.L.; de Avila-Delucis, R.; Beltrame, R.; Gatto, D.A. 2020. Hydrothermal treatments to promote surface inactivation and increased flexibility in three hardwoods. Maderas. Ciencia y Tecnología 22(4): 439-446. http://dx.doi.org/10.4067S0718-221X2020005000402

Delucis, R. de A.; Magalhães, W.L.E.; Petzhold, C.L.; Amico, S.C. 2018. Thermal and combustion features of rigid polyurethane biofoams filled with four forest-based wastes. Polymer Composites 39 (S3): E1770-E1777. https://doi.org/10.1002/pc.24784

Delucis, R.D.A.; Diaz, R.H.; Amico, S.C.; Labidi, J.; Gatto, D.A. 2017. Comparative study of weathering behavior of four fast-growing eucalyptus species. Cellulose Chemistry and Technology 51(9-10): 889-898. https://www.cellulosechemtechnol.ro/pdf/CCT9-10(2017)/p.889-898.pdf

Delucis, R.D.A.; Gatto, D.A. 2014. Flexural properties of four fast-growing eucalypts woods deteriorated by three different field tests. Acta Scientiarum - Technology 39(1): 39-44. https://doi.org/10.4025/actascitechnol. v39i1.27067

Delucis, R.D.A.; Beltrame, R.; Gatto, D.A. 2019. Discolouration of heat-treated fast-growing eucalyptus wood exposed to natural weathering. Cellulose Chemistry and Technology 53(7-8): 635-641. https://10.35812/ CelluloseChemTechnol.2019.53.62

Ding, Y.; Ezekoye, O.A.; Lu, S.; Wang, C. 2016. Thermal degradation of beech wood with thermogravimetry/Fourier transform infrared analysis. Energy Conversion and Management 120: 370-377. https://doi.org/10.1016/j.enconman.2016.05.007

Esteves, B.M.; Herrera, R.; Santos, J.; Carvalho, L.; Nunes, L.; Ferreira, J.; Domingos, I.J.; Cruz- Lopes, L. 2020. Artificial Weathering of Heat-treated Pines from the Iberian Peninsula. BioResources 15(4): 9642-9655. https://bioresources.cnr.ncsu.edu/resources/artificialweathering-of-heat-treated-pines-from-the- iberian-peninsula/

Esteves, B.M.; Pereira, H.M. 2009. Wood modification by heat treatment: A review. BioResources 4(1): 370-404. https://bioresources.cnr.ncsu.edu/BioRes_04/BioRes_04_1_0370_Esteves_P_Wood_Mod_Heat_ Treatment_Rev_367.pdf

Frybort, S.; Obersriebnig, M.; Müller, U.; Gindl-Altmutter, W.; Konnerth, J. 2014. Variability in surface polarity of wood by means of AFM adhesion force mapping. Colloids and Surfaces A: Physicochemical and Engineering Aspects 457: 82-87. https://doi.org/10.1016j.colsurfa.2014.05.055

Gallio, E.; Zanatta, P.; Cruz, N.D.; Zanol, G.S.; Schulz, H.R.; Gatto, D.A. 2019. Influence of thermal rectification and furfurylation treatments on technological properties of a conifer. Materia 24(3). https://doi. org/10.1590/S1517-707620190003.0739

Gallio, E.; Zanatta, P.; Gatto, D.A.; Beltrame, R. 2018. Fourier transform infrared spectroscopy in treated woods deteriorated by a white rot. Maderas. Ciencia y Tecnología 20(3): 479-488. http://dx.doi.org/10.4067/S0718-221X2018005031701

Hadi, Y.S.; Massijaya, M.Y.; Arinana, A. 2016. Subterranean termite resistance of polystyrene- treatedwood from three tropicalwood species. Insects 7(3): 6-11. https://doi.org/10.3390/insects7030037

He, L.; Zhang, T.; Zhao, X.; Zhao, Y.; Xu, K.; He, Z.; Yi, S. 2023. Synergistic effect of tung oil and heat treatment on surface characteristics and dimensional stability of wood. Colloids and Surfaces A: Physicochemical and Engineering Aspects 665: 131233. https://doi.org/10.1016/j.colsurfa.2023.131233

Herrera, R.; Sandak, J.; Robles, E.; Krystofiak, T.; Labidi, J. 2018. Weathering resistance of thermally modified wood finished with coatings of diverse formulations. Progress in Organic Coatings 119: 145-154. https://doi.org/10.1016/j.porgcoat.2018.02.015

Herrera-Díaz, R.; Sepúlveda-Villarroel, V.; Torres-Mella, J.; Salvo-Sepúlveda, L.; Llano-Ponte, R.; Salinas-Lira, C.; Peredo, M.; Ananías, R.A. 2019. Influence of the wood quality and treatment temperature on the physical and mechanical properties of thermally modified radiata pine. European Journal of Wood and Wood Products 77(4): 661-671. https://doi.org/10.1007/s00107-019-01424-9

Hill, C.; Altgen, M.; Rautkari, L. 2021. Thermal modification of wood - a review : chemical changes and hygroscopicity. Journal of Materials Science 56 (11): 6581-6614. https://doi.org/10.1007/s10853-020-05722-z

Hill, C.; Kymalainen, M.; Rautkari, L. 2022. Review of the use of solid wood as an external cladding material in the built environment. Journal of Materials Science 57:9031-9076. https://doi.org/10.1007/s10853- 022-07211-x

Jirouš-Rajković, V.; Miklecić, J. 2021. Enhancing Weathering Resistance of Wood - A Review. Polymers 13(12): e1980. https://doi.org/10.3390/polym13121980

Kamperidou, V. 2019. The biological durability of thermally-and chemically-modified black pine and poplarwood against basidiomycetes and mold action. Forests 10(12):e1111. https://doi.org/10.3390/f10121111

Krystofiak, T.; Can, A.; Lis, B., 2022. Investigation of Roughness and Adhesion Strength Properties of Pine and Poplar Wood Heat Treated in Air and under Vacuum after Artificial Aging. Coatings 12(12): e1910. https://doi.org/10.3390/coatings12121910

Kuka, E.; Andersons, B.; Cirule, D.; Andersone, I.; Kajaks, J.; Militz, H.; Bicke, S. 2020. Weathering properties of wood-plastic composites based on heat-treated wood and polypropylene. Composites Part A: Applied Science and Manufacturing 139: e106102. https://doi.org/10.1016/j.compositesa.2020.106102

Kymäläinen, M.; Lourençon, T.V.; Lillqvist, K. 2022. Natural weathering of soft - and hardwoods modified by contact and flame charring methods. European Journal of Wood and Wood Products 80: 1309- 1320. https://doi.org/10.1007/s00107-022-01864-w

Laina, R.; Sanz-Lobera, A.; Villasante, A.; López-Espí, P.; Martínez-Rojas, J.A.; Alpuente, J.; Sánchez-Montero, R.; Vignote, S. 2017. Effect of the anatomical structure, wood properties and machining conditions on surface roughness of wood. Maderas. Ciencia y Tecnología 19(2): 203-212. http://dx.doi.org/10.4067/S0718-221X2017005000018

Lee, S.H.; Ashaari, Z.; Lum, W.C.; Abdul Halip, J.; Ang, A.F.; Tan, L.P.; Chin, K.L.; Md-Tahir, P. 2018. Thermal treatment of wood using vegetable oils: A review. Construction and Building Materials 181: 408-419. https://doi.org/10.1016/j.conbuildmat.2018.06.058

Lengowski, E.C.; Bonfati Junior, E.A.; Nisgoski, S.; Muñiz, G.I.B.; Klock, U. 2021. Properties of thermally modified teakwood. Maderas. Ciencia y Tecnología (23): 1-16. http://dx.doi.org/10.4067/s0718- 221x2021000100410

Lovaglio, T.; Auria, M.D.; Gindl-altmutter, W.; Giudice, V.L.; Langerame, F.; Salvi, A.M.; Todaro, L. 2022. Thermal Modification and Alkyl Ketene Dimer Effects on the Surface Protection of Deodar Cedar (Cedrus deodara Roxb .) Wood. Forest 13(10): e1551. https://doi.org/10.3390/f13101551

Mattos, B.D.; Lourençon, T.V.; Gatto, D.A.; Serrano, L.; Labidi, J. 2016. Chemical characterization of wood and extractives of fast-growing Schizolobium parahyba and Pinus taeda. Wood Material Science & Engineering 11(4): 209-216. https:/doi.org10.1080/17480272.2014.970574

Missio, A.L.; Bayer, F.M.; Gatto, D.A.; Cademartori, P.H.G. 2014. Sampling sufficiency of the anatomical characteristics of Brazilian hardwood using the resampling method. Acta Scientiarum. Technology 36 (3): 413-420. https://doi.org10.4025actascitechnol.v36i3.20335

Missio, A.L.; Mattos, B.D.; De Cademartori, P.H.G.; Gatto, D.A. 2016. Effects of Two-Step Freezing- Heat Treatments on Japanese Raisintree (Hovenia dulcis Thunb.) Wood Properties. Journal of Wood Chemistry and Technology 36(1): 16-26. https://doi.org10.1080/02773813.2015.1039544

Missio, A.L.; Mattos, B.D.; Cademartori, P.H.G.; Pertuzzatti, A.; Conte, B.; Gatto, D.A. 2015. Thermochemical and physical properties of two fast-growing eucalypt woods subjected to two-step freeze- heat treatments. Thermochimica Acta 615: 15-22. https://doi.org10.1016/j.tca.2015.07.005

Nguyen, T.T.; Nguyen, T.H.; Ji, X.; Yuan, B.; Mai, H.; Khoa, T.; Lanh, T. Guo, M. 2019. Prediction of the color change of heat - treated wood during artificial weathering by artificial neural network. European Journal of Wood and Wood Products 77(6): 1107-1116. https://doi.org/10.1007/s00107-019-01449-0

Özgenç, Ö.; Durmaz, S.; Boyaci, I.H.; Eksi-Kocak, H. 2017. Determination of chemical changes in heat-treated wood using ATR-FTIR and FT Raman spectrometry. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 171: 395-400. https://doi.org/10.1016/j.saa.2016.08.026

Pandey, K.K.; Pitman, A.J. 2003. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. International Biodeterioration & Biodegradation 52(3): 151-160. https://doi.org/10.1016/S0964-8305(03)00052-0

Peng, Y.; Wang, Y.; Zhang, R.; Wang, W.; Cao, J. 2021. Industrial Crops & Products Improvement of wood against UV weathering and decay by using plant origin substances : Tannin acid and tung oil. Industrial Crops and Products 168: e113606. https://doi.org/10.1016/j.indcrop.2021.113606

Popescu, C.M.; Spiridon, I.; Tibirna, C.M.; Vasile, C. 2011. A thermogravimetric study of structural changes of lime wood (Tilia cordata Mill.) induced by exposure to simulated accelerated UV/Vis-light. Journal of Photochemistry and Photobiology A: Chemistry 217(1): 207-212. https://doi.org/10.1016/j. jphotochem.2010.10.010

Poubel, D.; Garcia, R.A.; Dos-Santos, W.A.; Oliveira, G.L.; Abreu, H.S. 2013. Efeito da termorretificação nas propriedades físicas e químicas da madeira de Pinus caribaea. Cerne 19(3): 391-398. https://doi.org/10.1590/S0104-77602013000300005

Pratiwi, L.A.; Darmawan, W.; Priadi, T.; George B.; Merlin, A.; Gérardin, C.; Dumarçay, S.; Gérardin, P. 2019. Characterization of thermally modified short and long rotation teaks and the effects on coatings performance. Maderas. Ciencia y Tecnología 21(2): 209-222. http://dx.doi.org/10.4067/S0718- 221X2019005000208

Salman, S.; Thévenon, M.F.; Pétrissans, A.; Dumarçay, S.; Candelier, K.; Gérardin, P. 2017. Improvement of the durability of heat-treated wood against termites. Maderas. Ciencia y Tecnología 19(3): 317-328. http://dx.doi.org/10.4067/S0718-221X2017005000027

Sivrikaya, H.; Can, A.; De-Troya, T.; Conde, M. 2015. Comparative biological resistance of differently thermal modified wood species against decay fungi, Reticulitermes grassei and Hylotrupes bajulus. Maderas. Ciencia y Tecnología 17(3): 559-570. http://dx.doi.org/10.4067/S0718-221X2015005000050

Tomak, E.D.; Ustaomer, D.; Yildiz, S.; Pesman, E. 2014. Changes in surface and mechanical properties of heat treated wood during natural weathering. Measurement 53: 30-39. https://doi.org/10.1016/j. measurement.2014.03.018

Yildiz, S.; Tomak, E.D.; Yildiz, U.C.; Ustaomer, D. 2013. Effect of artificial weathering on the properties of heat treated wood. Polymer Degradation and Stability 98 (8): 1419-1427. https://doi.org/10.1016/j. polymdegradstab.2013.05.004

Zhang, X.; Wang, F.; Keer, L. 2015. Influence of Surface Modification on the Microstructure and Thermo- Mechanical Properties of Bamboo Fibers. Materials 8(10): 6597-6608. https://doi.org/10.3390/ma8105327

Zhang, Y.; Yu, Y.; Lu, Y.; Yu, W.; Wang, S. 2021. Effects of heat treatment on surface physicochemical properties and sorption behavior of bamboo (Phyllostachys edulis ). Construction and Building Materials 282: e122683. https://doi.org/10.1016/j.conbuildmat.2021.122683

Downloads

Published

2023-11-30

How to Cite

Ripoll de Medeiros, R. ., Pereira Acosta, A. ., Techera Barbosa, K. ., de Avila Delucis, R. ., Beltrame, R. ., & Gatto, D. A. . (2023). Effects of thermal treatment and weathering in the resistance against termites of a fast-growing pine wood. Maderas-Cienc Tecnol, 26, 1–18. https://doi.org/10.22320/s0718221x/2024.12

Issue

Section

Article

Most read articles by the same author(s)