Mineralization of chemically treated sawdust and its use as aggregates in fly ash-based geopolymer composites
DOI:
https://doi.org/10.22320/s0718221x/2025.13Keywords:
Alkaline activation, fly ash, geopolymer composite, mechanical properties, sustainable aggregates, wood sawdust, wood mineralizationAbstract
This study presents an innovative approach to wood mineralization through various pretreatments, focusing on the application of chemically treated sawdust as aggregates in fly ash-based geopolymer composites. Eucalyptus wood sawdust underwent five distinct treatments: cold water washing (CWW), hot water washing (HWW), sodium hydroxide washing (SHW), calcium hydroxide mineralization (CHM), and Portland cement mineralization (PCM). Comparative analyses revealed that the properties of these geopolymer composites were comparable to, or exceeded, those achieved with traditional sand aggregate. The incorporation of the pretreated wood aggregates resulted in geopolymer composites with comparable compressive strength values at 30 and 90 days, with further strength improvements after aging especially for composites treated with HWW or SHW. Additionally, these composites exhibit the formation of a mineral layer on the wood surface, confirming successful mineralization. This study concludes that HWW and SHW treatments significantly enhanced the compatibility between wood and the geopolymer matrix, paving the way for developing light weight geopolymer composites with promising applications in the sustainable building materials.
Downloads
References
Ahmaruzzaman, M. 2010. A Review on the utilization of fly ash. Progress in Energy and Combustion Science 36(3): 327-363. https://doi.org/10.1016/j.pecs.2009.11.003 DOI: https://doi.org/10.1016/j.pecs.2009.11.003
Abdullah, M.M.A.; Ahmad, M.I.; Faheem, M.T.M.; Kamarudin, H.; Nizar, K.I.; Bnhussain, M.; Rafiza, A.R.; Zarina, Y.; Liyana, J. 2012. Feasibility of producing wood fibre-reinforced geopolymer composites (WFRGC). Advanced Materials Research 626: 918-925. https://doi.org/10.4028/www.scientific.net/AMR.626.918 DOI: https://doi.org/10.4028/www.scientific.net/AMR.626.918
ASTM International. ASTM. 1999. Standard test methods for flexural properties of ceramic whiteware materials. ASTM C674-99. ASTM International: West Conshohocken, PA, USA.
ASTM International. ASTM 2023. Standard practice for operating fluorescent ultraviolet (UV) lamp apparatus for exposure of materials. ASTM G154-23. ASTM International: West Conshohocken, PA, USA.
Amran, M.; Debbarma, S.; Ozbakkaloglu, T. 2021. Fly ash-based eco-friendly geopolymer concrete: a critical review of the long-term durability properties. Construction and Building Materials 270. 121857. https://doi.org/10.1016/j.conbuildmat.2020.121857 DOI: https://doi.org/10.1016/j.conbuildmat.2020.121857
Amran, Y.H.M.; Alyousef, R.; Alabduljabbar, H.; El-Zeadani, M. 2020. Clean production and properties of geopolymer concrete: a review. Journal of Cleaner Production 251(April). e119679. https://doi.org/10.1016/j.jclepro.2019.119679 DOI: https://doi.org/10.1016/j.jclepro.2019.119679
Arslan, A.A.; Uysal, M.; Yılmaz, A.; Al-mashhadani, M.M.; Canpolat, O.; Şahin, F.; Aygörmez, Y. 2019. Influence of wetting-drying curing system on the performance of fiber reinforced metakaolin-based geopolymer composites. Construction and Building Materials 225: 909-926. https://doi.org/10.1016/j.conbuildmat.2019.07.235 DOI: https://doi.org/10.1016/j.conbuildmat.2019.07.235
Asante, B.; Schmidt, G.; Teixeira, R.; Krause, A.; Savastano-Junior, H. 2021. Influence of wood pretreatment and fly ash particle size on the performance of geopolymer wood composite. European Journal of Wood and Wood Products 79(3): 597-609. https://doi.org/10.1007/s00107-021-01671-9 DOI: https://doi.org/10.1007/s00107-021-01671-9
Asante, B.; Ye, H.; Nopens, M.; Schmidt, G.; Krause, A. 2022. Influence of wood moisture content on the hardened state properties of geopolymer wood composites. Composites Part A: Applied Science and Manufacturing 152. e106680. https://doi.org/10.1016/j.compositesa.2021.106680 DOI: https://doi.org/10.1016/j.compositesa.2021.106680
Assaedi, H.; Alomayri, T.; Shaikh, F.; Low, I.M. 2019. Influence of nano silica particles on durability of flax fabric reinforced geopolymer composites. Materials 12(9). e1459. https://doi.org/10.3390/ma12091459 DOI: https://doi.org/10.3390/ma12091459
ABNT. 2005. Agregados para concreto - Especificação. ABNT NBR 7211. ABNT: Rio de Janeiro, Brazil.
ABNT. 2006. Agregados - Determinação da massa unitária e do volume de vazios. ABNT NBR NM 45-06. ABNT: Rio de Janeiro, Brazil.
ABNT. 2019. Cimento Portland - Determinação da resistência à compressão de corpos de prova cilíndricos. ABNT NBR 7215. ABNT: Rio de Janeiro, Brazil.
ABNT. 2005. Agregados para concreto - Especificação. ABNT NBR 7211: ABNT: Rio de Janeiro, Brazil.
Azevedo, A.G.S.; Strecker, K.; Araújo Jr., A.G.; Silva, C.A. 2017. Produção de geopolímeros à base de cinza volante usando soluções ativadoras com diferentes composições de Na2O e Na2SiO3. Cerâmica 63(366): 143-151. https://doi.org/10.1590/0366-69132017633662078 DOI: https://doi.org/10.1590/0366-69132017633662078
Boadu, K.B.; Antwi-Boasiako, C.; Ofosuhene, L. 2018. Solvent extraction of inhibitory substances from three hardwoods of different densities and their compatibility with cement in composite production. Journal of the Indian Academy of Wood Science 15(2): 140-148. https://doi.org/10.1007/s13196-018-0219-0 DOI: https://doi.org/10.1007/s13196-018-0219-0
Cardoso, A.M.; Paprocki, A.; Ferret, L.S.; Azevedo, C.M.N.; Pires, M. 2015. Synthesis of zeolite Na-Pl under mild conditions using Brazilian coal fly ash and its application in wastewater treatment. Fuel 139: 59-67. https://doi.org/10.1016/j.fuel.2014.08.016 DOI: https://doi.org/10.1016/j.fuel.2014.08.016
Członka, S.; Strąkowska, A.; Pospiech, P.; Strzelec, K. 2020. Effects of chemically treated eucalyptus fibers on mechanical, thermal and insulating properties of polyurethane composite foams. Materials 13(7). e1781. https://doi.org/10.3390/ma13071781 DOI: https://doi.org/10.3390/ma13071781
Danish, A.; Ozbakkaloglu, T.; Ali Mosaberpanah, M.; Salim, M.U.; Bayram, M.; Yeon, J.H.; Jafar, K. 2022. Sustainability benefits and commercialization challenges and strategies of geopolymer concrete: a review. Journal of Building Engineering 58. e105005. https://doi.org/10.1016/j.jobe.2022.105005 DOI: https://doi.org/10.1016/j.jobe.2022.105005
Fan, M.; Ndikontar, M.K.; Zhou, X.; Ngamveng, J.N. 2012. Cement-bonded composites made from tropical woods: compatibility of wood and cement. Construction and Building Materials 36: 135-140. https://doi.org/10.1016/j.conbuildmat.2012.04.089 DOI: https://doi.org/10.1016/j.conbuildmat.2012.04.089
Furtos, G.; Molnar, L.; Silaghi-Dumitrescu, L.; Pascuta, P.; Korniejenko, K. 2022. Mechanical and thermal properties of wood fiber reinforced geopolymer composites. Journal of Natural Fibers 19(13): 6676-6691. https://doi.org/10.1080/15440478.2021.1929655 DOI: https://doi.org/10.1080/15440478.2021.1929655
Furtos, G.; Silaghi-Dumitrescu, L.; Pascuta, P.; Sarosi, C.; Korniejenko, K. 2021. Mechanical properties of wood fiber reinforced geopolymer composites with sand addition. Journal of Natural Fibers 18(2): 285-296. https://doi.org/10.1080/15440478.2019.1621792 DOI: https://doi.org/10.1080/15440478.2019.1621792
Garcez, M. R.; Santos, T.; Garcez, E. O.; Gatto, D. 2016. Propriedades mecânicas de compósitos cimento-madeira com serragem tratada de Pinus elliottii. Revista Ciência da Madeira 7(1): 16-27.https://doi.org/10.12953/2177-6830/rcm.v7n1p16-27 DOI: https://doi.org/10.12953/2177-6830/rcm.v7n1p16-27
Gollakota, A.R.K.; Volli, V.; Shu, C.M. 2019. Progressive utilisation prospects of coal fly ash: a review. Sci Total Environ 672: 951-989. https://doi.org/10.1016/j.scitotenv.2019.03.337 DOI: https://doi.org/10.1016/j.scitotenv.2019.03.337
Jorge, F.C.; Pereira, C.; Ferreira, J.M.F. 2004. Wood-cement composites: a review. Holz als Roh- und Werkstoff 62(5): 370-377. https://doi.org/10.1007/s00107-004-0501-2 DOI: https://doi.org/10.1007/s00107-004-0501-2
Kumar, M.; Kumar, M.; Arora, S. 2013. Thermal degradation and flammability studies of wood coated with fly ash intumescent composites. Journal of the Indian Academy of Wood Science 10(2): 125-133. https://doi.org/10.1007/s13196-013-0105-8 DOI: https://doi.org/10.1007/s13196-013-0105-8
Lazorenko, G.; Kasprzhitskii, A.; Yavna, V.; Mischinenko, V.; Kukharskii, A.; Kruglikov, A.; Kolodina, A.; Yalovega, G. 2020. Effect of pre-treatment of flax tows on mechanical properties and microstructure of natural fiber reinforced geopolymer composites. Environmental Technology & Innovation 20. e101105. https://doi.org/10.1016/j.eti.2020.101105 DOI: https://doi.org/10.1016/j.eti.2020.101105
Lekshmi, S.; Sudhakumar, J. 2022. An assessment on the durability performance of fly ash-clay based geopolymer mortar containing clay enhanced with lime and GGBS. Cleaner Materials 5. e100129. https://doi.org/10.1016/j.clema.2022.100129 DOI: https://doi.org/10.1016/j.clema.2022.100129
Luhar, I.; Luhar, S. 2022. A Comprehensive review on fly ash-based geopolymer. Journal of Composites Science 6(8). e219. https://doi.org/10.3390/jcs6080219 DOI: https://doi.org/10.3390/jcs6080219
Maichin, P.; Suwan, T.; Jitsangiam, P.; Chindaprasirt, P. 2020. Hemp fiber reinforced geopolymer composites: effects of naoh concentration on fiber pre-treatment process. Key Engineering Materials 841: 166-170. https://doi.org/10.4028/www.scientific.net/KEM.841.166 DOI: https://doi.org/10.4028/www.scientific.net/KEM.841.166
Maichin, P.; Suwan, T.; Jitsangiam, P.; Chindaprasirt, P.; Fan, M. 2020. Effect of self-treatment process on properties of natural fiber-reinforced geopolymer composites. Materials and Manufacturing Processes 35(10): 1120-1128. https://doi.org/10.1080/10426914.2020.1767294 DOI: https://doi.org/10.1080/10426914.2020.1767294
Malenab, R.; Ngo, J.; Promentilla, M. 2017. Chemical treatment of waste abaca for natural fiber-reinforced geopolymer composite. Materials 10(6). e579. https://doi.org/10.3390/ma10060579 DOI: https://doi.org/10.3390/ma10060579
Manique, M.C.; Lacerda, L.V.; Alves, A.K.; Bergmann, C.P. 2017. Biodiesel production using coal fly ash-derived sodalite as a heterogeneous catalyst. Fuel 190: 268-273. https://doi.org/10.1016/j.fuel.2016.11.016 DOI: https://doi.org/10.1016/j.fuel.2016.11.016
Nath, S.K.; Maitra, S.; Mukherjee, S.; Kumar, S. 2016. Microstructural and morphological evolution of fly ash based geopolymers. Construction and Building Materials 111: 758-765. https://doi.org/10.1016/j.conbuildmat.2016.02.106 DOI: https://doi.org/10.1016/j.conbuildmat.2016.02.106
Olayiwola, H.O.; Amiandamhen, S.O.; Meincken, M.; Tyhoda, L. 2021. Investigating the suitability of fly ash/metakaolin-based geopolymers reinforced with south african alien invasive wood and sugarcane bagasse residues for use in outdoor conditions. European Journal of Wood and Wood Products 79(3): 611-627. https://doi.org/10.1007/s00107-020-01636-4 DOI: https://doi.org/10.1007/s00107-020-01636-4
Pavithra, P.; Srinivasula Reddy, M.; Dinakar, P.; Hanumantha Rao, B.; Satpathy, B.K.; Mohanty, A.N. 2016. A mix design procedure for geopolymer concrete with fly ash. Journal of Cleaner Production 133: 117-125. https://doi.org/10.1016/j.jclepro.2016.05.041 DOI: https://doi.org/10.1016/j.jclepro.2016.05.041
Quiroga, A.; Marzocchi, V.; Rintoul, I. 2016. Influence of Wood Treatments on Mechanical properties of wood-cement composites and of populus euroamericana wood fibers. Composites Part B: Engineering 84: 25-32. https://doi.org/10.1016/j.compositesb.2015.08.069 DOI: https://doi.org/10.1016/j.compositesb.2015.08.069
Ranjbar, N.; Zhang, M. 2020. Fiber-reinforced geopolymer composites: a review. Cement and Concrete Composites 107. e103498. https://doi.org/10.1016/j.cemconcomp.2019.103498. DOI: https://doi.org/10.1016/j.cemconcomp.2019.103498
Rattanasak, U.; Chindaprasirt, P. 2009. Influence of NaOH solution on the synthesis of fly ash geopolymer. Minerals Engineering 22(12): 1073-1078. https://doi.org/10.1016/j.mineng.2009.03.022 DOI: https://doi.org/10.1016/j.mineng.2009.03.022
Ravindran, R.; Jaiswal, A.K. 2016. A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: Challenges and opportunities. Bioresource Technology 199: 92-102. https://doi.org/10.1016/j.biortech.2015.07.106 DOI: https://doi.org/10.1016/j.biortech.2015.07.106
Sarmin, S.N.; Welling, J. 2016. Lightweight geopolymer wood composite synthesized from alkali-activated fly ash and metakaolin. Jurnal Teknologi 78(11): 49-55. https://doi.org/10.11113/.v78.8734 DOI: https://doi.org/10.11113/.v78.8734
Sciban, M.; Klasnja, M.; Skrbic, B. 2006. Modified softwood sawdust as adsorbent of heavy metal ions from water. Journal of Hazardous Materials 136(2): 266-271. https://doi.org/10.1016/j.jhazmat.2005.12.009 DOI: https://doi.org/10.1016/j.jhazmat.2005.12.009
Stevulova, N.; Cigasova, J.; Estokova, A.; Terpakova, E.; Geffert, A.; Kacik, F.; Singovszka, E.; Holub, M. 2014. Properties characterization of chemically modified hemp hurds. Materials 7(12): 8131-8150. https://doi.org/10.3390/ma7128131 DOI: https://doi.org/10.3390/ma7128131
Tchadjie, L.N.; Ekolu, S.O. 2018. Enhancing the reactivity of aluminosilicate materials toward geopolymer synthesis. Journal of Materials Science 53(4): 4709-4733. https://doi.org/10.1007/s10853-017-1907-7 DOI: https://doi.org/10.1007/s10853-017-1907-7
Wang, Y.; Zhao, J. 2019. Facile preparation of slag or fly ash geopolymer composite coatings with flame resistance. Construction and Building Materials 203: 655-661. https://doi.org/10.1016/j.conbuildmat.2019.01.097 DOI: https://doi.org/10.1016/j.conbuildmat.2019.01.097
Yang, J.; Huang, J.; Su, Y.; He, X.; Tan, H.; Yang, W.; Strnadel, B. 2019. Eco-friendly treatment of low-calcium coal fly ash for high pozzolanic reactivity: a step towards waste utilization in sustainable building material. Journal of Cleaner Production 238. e117962. https://doi.org/10.1016/j.jclepro.2019.117962 DOI: https://doi.org/10.1016/j.jclepro.2019.117962
Ye, H.; Zhang, Y.; Yu, Z.; Mu, J. 2018. Effects of cellulose, hemicellulose, and lignin on the morphology and mechanical properties of metakaolin-based geopolymer. Construction and Building Materials 173: 10-16. https://doi.org/10.1016/j.conbuildmat.2018.04.028 DOI: https://doi.org/10.1016/j.conbuildmat.2018.04.028
Yel, H.; He, C.; Urun, E. 2022. Performance of cement-bonded wood particleboards produced using fly ash and spruce planer shavings. Maderas. Ciencia y Tecnología 24(44): 1-10. https://doi.org/10.4067/S0718-221X2022000100444 DOI: https://doi.org/10.4067/S0718-221X2022000100444
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de Reconocimiento de Creative Commons CC-BY que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.