Toxicity and repellency of chlorpyrifos nanocapsules against subterranean termite Coptotermes curvignathus

Authors

  • Roszaini Kadir Forest Products Division, Forest Research Institute Malaysia (FRIM), Kepong, Selangor Darul Ehsan, Malaysia.
  • Tumirah Khadiran Forest Products Division, Forest Research Institute Malaysia (FRIM), Kepong, Selangor Darul Ehsan, Malaysia.
  • Mohamad Nasir Mat Arip Forest Products Division, Forest Research Institute Malaysia (FRIM), Kepong, Selangor Darul Ehsan, Malaysia.
  • Shahlinney Lipeh Forest Products Division, Forest Research Institute Malaysia (FRIM), Kepong, Selangor Darul Ehsan, Malaysia.

DOI:

https://doi.org/10.22320/s0718221x/2024.44

Keywords:

Chlorpyrifos, mortality, nanocapsules, toxicity, repellency, subterranean termite

Abstract

Chlorpyrifos is widely used in agricultural and building industries to control many insects including termites. However, its low aqueous solubility and tendency to decompose under sunlight results in decrease in its efficiency. In the present study, chlorpyrifos was encapsulated into nano-sized poly (styrene-co-maleic anhydrite) using a mini-emulsion in-situ polymerization method to improve the effective utilization rate. The termiticidal properties of nanocapsules at different concentrations (1 - 25 wt%) were tested against subterranean termite; Coptotermes curvignathus. Results of Choice bioassays shows that chlorpyrifos nanocapsules are strongly toxic to Coptotermes curvignathus. The filter paper feeding inhibition and repellent bioassay show a significant feeding inhibition (> 60 %) at lowest concentration of chlorpyrifos nanocapsules. The highest mortality rate of termites (90 %) after 24-h exposure was observed in the sample treated with the highest concentration of chlorpyrifos nanocapsules (25 wt%). Results obtained from this study show that chlorpyrifos nanocapsules have a strong termiticidal property against Coptotermes curvignathus. This indicates that the nanoencapsulation of biocides chlorpyrifos opens a real potential of new and advanced wood preservation technology.

Downloads

Download data is not yet available.

Author Biographies

Roszaini Kadir , Forest Products Division, Forest Research Institute Malaysia (FRIM), Kepong, Selangor Darul Ehsan, Malaysia.

Biography

Tumirah Khadiran, Forest Products Division, Forest Research Institute Malaysia (FRIM), Kepong, Selangor Darul Ehsan, Malaysia.

Biography

Mohamad Nasir Mat Arip , Forest Products Division, Forest Research Institute Malaysia (FRIM), Kepong, Selangor Darul Ehsan, Malaysia.

Biography

Shahlinney Lipeh , Forest Products Division, Forest Research Institute Malaysia (FRIM), Kepong, Selangor Darul Ehsan, Malaysia.

Biography

References

Abbott, W.S. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265-267. https://pubmed.ncbi.nlm.nih.gov/3333059/ DOI: https://doi.org/10.1093/jee/18.2.265a

Abdul Majid, A.H.; Ahmad, A.H. 2009. Termite infestation selected from premises in Penang, Seberang Prai and Sungai Petani, Malaysia. Malaysian Applied Biology 38(2): 37-48. https://www.academia.edu/30317493/The_Status_of_Subterranean_Termite_Infestation_in_Penang_Seberang_Perai_and_Kedah_Malaysia

Ahmed, M.A.I.; Eraky, S.A.; Fakeer, M.; Soliman, A.S. 2015. Potential toxicity assessment of novel selected pesticides against sand termite, Psammotermes hypostoma (Desneux workers) (Isoptera: Rhinotermitidae) under field conditions in Egypt. Journal of Plant Protection Research 55(2): 193-197. https://doi.org/10.1515/jppr-2015-0026 DOI: https://doi.org/10.1515/jppr-2015-0026

Ahmed, S.; Hassan, B.; Yaqoob, M.M.; Nisar, M.S.; Rashid, A. 2017. Efficacy of chlorpyrifos and fipronil in relation to soil depths against subterranean termites. Journal of Entomological and Acarological Research 49(1): 6386-6390. http://doi.org/10.4081/jear.2017.6386 DOI: https://doi.org/10.4081/jear.2017.6386

Akpesse, A.A.M.; Coulibaly, T.; Boga, J.P.; Yapi, A.; Kouassi, K.P. 2014. Laboratory evaluation of chlorpyrifos-ethyl and fipronil against Ancistrotermes cavithorax (Isoptera: Termitidae) in South Côte d’Ivoire. International Journal of Agriculture Innovations and Research 3(2): 519-522.

Anon. 2002. Focus on termite control: Chlorpyrifos update. https://www.pctonline.com/article/focus-on-termite-control--chlorpyrifos-update/

Asogwa, E.U.; Okelana, F.A.; Ndubuaku, T.C.N.; Mokwunye, I.U. 2009. The termiticidal effects of chlorpyrifos 48EC, endosulfan 35 EC, dichlorvos 1000 EC and diazinon 600 EC against termites in South-West Nigeria. African Journal of Biotechnology 8(1): 48-52. https://www.ajol.info/index.php/ajb/article/view/59731

Bakry, A.M.; Abbas, S.; Ali, B.; Majeed, H.; Abouelwafa, M.Y.; Mousa, A.; Liang, L. 2016. Microencapsulation of oils: a comprehensive review of benefits, techniques and applications. Comprehensive Reviews in Food Science and Food Safety 15(1): 143-182. https://doi.org/10.1111/1541-4337.12179 DOI: https://doi.org/10.1111/1541-4337.12179

Bilenler, T.; Gokbulut, I.; Sislioglu, K.; Karabulut, I. 2015. Antioxidant and antimicrobial properties of thyme essential oil encapsulated in zein particles. Flavour and Fragrance Journal 30: 392-398. https://doi.org/10.1002/ffj.3254 DOI: https://doi.org/10.1002/ffj.3254

Budarz, J.F.; Cooper, E.M.; Gardner, C.; Hodzic, E.; Ferguson, P.L.; Gunsch, C.K.; Wiesner, M.R. 2019. Chlorpyrifos degradation via photoreactive TiO2 nanoparticles: accessing the impact of a multi-component degradation scenario. Journal of Hazardous Materials 372: 61-68. https://doi.org/10.1016/j.jhazmat.2017.12.028 DOI: https://doi.org/10.1016/j.jhazmat.2017.12.028

Chen, Z.; Qu, Y.; Xiao, D.; Song, L.F.; Zhang, S.H.; Gao, X.W.; Desneux, N.; Song, D.L. 2015. Lethal and social-medicated effects of ten insecticides on the subterranean termite Reticulitermes speratus. Journal of Pest Science 88: 741-751. https://doi.org/10.1007/s10340-015-0656-0 DOI: https://doi.org/10.1007/s10340-015-0656-0

Cheng, S.; Kirton, L.G.; Gurmit, S. 2008. Termite attack on oil palm grown on peat soil: identification of pest species and factors contributing to the problem. Planter 84(991): 659-670. http://dx.doi.org/10.56333/tp.2008.010 DOI: https://doi.org/10.56333/tp.2008.010

Dick, R.B.; Steenland, K.; Krieg, E.F.; Hines, C.J. 2001. Evaluation of acute sensory-motor effects and test sensitivity using termiticide workers exposed to chlorpyrifos. Neurotoxicology and Teratology 23(4): 381-393. https://doi.org/10.1016/s0892-0362(01)00143-x DOI: https://doi.org/10.1016/S0892-0362(01)00143-X

Dyer, S.M.; Cattani, M.; Pisaniello, D.L.; Williams, F.M.; Edwards, J.W. 2001. Peripheral cholinesterase inhibition by occupational chlorpyrifos exposure in Australian termiticide applicators. Toxicology 169: 177-185. http://doi.org/10.1016/s0300-483x(01)00509-1 DOI: https://doi.org/10.1016/S0300-483X(01)00509-1

Emamjomeh, L.; Imani, S.; Talebi Jahromi, K.; Moharramipour, S. 2022. Nanoencapsulation enhances the contact toxicity of Eucalyptus globulus Labill and Zataria multiflora Boiss essential oils against the third instar larvae of Ephestia kuehniella (Lepidoptera: Pyralidae). International Journal of Pest Management 69:207-214. http://dx.doi.org/10.1080/09670874.2020.1871529 DOI: https://doi.org/10.1080/09670874.2020.1871529

Enserink, M.; Hines, P.J.; Vignieri, S.N.; Wigginton, N.S.; Yeston, J.S. 2013. The pesticide paradox. Science 341(6147): 728-279. http://doi.org/10.1126/science.341.6147.728 DOI: https://doi.org/10.1126/science.341.6147.728

Fan, R.; Zhang, W.; Li, L.; Jia, L.; Zhao, J.; Zhao, Z.; Peng, S.; Yuan, X.; Chen, Y. 2021. Individual and synergistic toxic effects of carbendazim and chlorpyrifos on zebrafish embryonic development. Chemosphere 280: e130769. http://doi.org/10.1016/j.chemosphere.2021.130769 DOI: https://doi.org/10.1016/j.chemosphere.2021.130769

Ferreira, C.D.; Nunes, I.L. 2019. Oil nanoencapsulation: development, application and incorporation into the food market. Nanoscale Research Letters 14: 1-13. http://doi.org/10.1186/s11671-018-2829-2 DOI: https://doi.org/10.1186/s11671-018-2829-2

Finney, D.J. 1971. Probit analysis, 3rd ed. Cambridge University Press, Cambridge, New York. https://doi.org/10.1002/jps.2600600940 DOI: https://doi.org/10.1002/jps.2600600940

Hassan, B.; Ahmed, S.; Ejaz, M.A. 2018. Persistency of chlorpyrifos and termiban (imidacloprid) in soil against subterranean termites. Journal of Entomological and Acarological Research 50: 7735-7738. http://doi.org/10.4081/jear.2018.7735 DOI: https://doi.org/10.4081/jear.2018.7735

Hillock, D.; Bolin P. 2012. Botanical pest controls. Oklahoma State University.

Huang, B.; Chen, F.; Shen, F.; Qian, K.; Wang, Y.; Sun, C.; Zhao, X.; Cui, B.; Gao, F.; Zeng, Z.; Cui, H. 2018. Advanced in targeted pesticides with environmentally responsive controlled release by nanotechnology. Nanomaterials 8(102): 1-1. http://dx.doi.org/10.3390/nano8020102 DOI: https://doi.org/10.3390/nano8020102

Iram, N.; Arshad, M.; Akhter, N. 2013. Evaluation of botanical and synthetic insecticide for the control of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). BioAssay Journal 8: 3-13. http://dx.doi.org/10.14295/ba.v8.0.117 DOI: https://doi.org/10.14295/BA.v8.0.117

Jones, K.D.; Huang, W.H. 2003. Evaluation of toxicity of the pesticides, chlorpyrifos and arsenic, in the presence of compost humid substances in aqueous systems. Journal of Hazardous Materials 103: 93-105. https://doi.org/10.1016/s0304-3894(03)00227-9 DOI: https://doi.org/10.1016/S0304-3894(03)00227-9

Kamble, S.T.; Davis, R.W. 2005. Innovation in perimeter treatment against subterranean termites (Isoptera: Rhinotermitidae). In: Proceedings of Fifth International Conference on Urban Pests. Lee, C.Y.; Robinson, W.H. (Eds.). P&Y Design Network, Malaysia. https://www.icup.org.uk/media/ysldazun/icup031.pdf

Karadeniz, M.; Sahin, M.; Sumnu, G. 2018. Enhancement of storage stability of wheat germ oil by encapsulation. Industrial Crops and Products 114: 14-18. https://doi.org/10.1016/j.indcrop.2018.01.068 DOI: https://doi.org/10.1016/j.indcrop.2018.01.068

Kard, B.M.; Mauldin, J.K. 1990. Termiticide field tests-1 989 update. Research Note November 1990. United States Department of Agriculture, USA. https://www.srs.fs.usda.gov/pubs/rn/rn_so363.pdf

Kurnia, A.; Dewi, I.F.; Makmur, R.F.; Sarwoto; Harsanti, E.S. 2021. Effect of chlorpyriphos in the soil on the onion cultivation and its declining. IOP Conference Series: Earth and Environmental Science 648: e012090. https://doi.org/10.1088/1755-1315/648/1/012090 DOI: https://doi.org/10.1088/1755-1315/648/1/012090

Lasagna, M.; Hielpos, M.S.; Ventura, C.; Mardirosian, M.N.; Martin, G.; Miret, N.; Randi, A.; Nunez, M.; Cocca, C. 2020. Chlorpyrifos subthreshold exposure induces epithelial-mesencyymal transition in breast cancer cells. Ecotoxicology and Environmental Safety 205: e111312. https://doi.org/10.1016/j.ecoenv.2020.111312 DOI: https://doi.org/10.1016/j.ecoenv.2020.111312

Liang, W.; Zhao, Y.; Xiao, D.; Cheng, J.; Zhao, J. 2020. A biodegradable water-triggered chitosan/hydroxypropyl methylcellulose pesticide mulch film for sustained control of Phytophthora sojae in soybean (Glycine max L. Merr.). Journal of Cleaner Production 245: e118943. https://doi.org/10.1016/j.jclepro.2019.118943 DOI: https://doi.org/10.1016/j.jclepro.2019.118943

Liu, Y.; Laks, P.; Heiden P. 2002. Controlled released of biocides in solid wood. II. Effficiency against Trametes versicolor and Gloeophyllum trabeum wood decay fungi. Journal of Applied Polymer Science 86(3): 608-614. https://doi.org/10.1002/app.10897 DOI: https://doi.org/10.1002/app.10897

Maia, F.; Tedim, J.; Lisenkov, A.D.; Salak, A.N.; Zheludkevich, M.L.; Ferreira, M.G. 2012. Silica nanocontainers for active corrosion protection. Nanoscale 4: 1287-1298. https://doi.org/10.1039/c2nr11536k DOI: https://doi.org/10.1039/c2nr11536k

Manager, S.; Singh, N.B. 2001. Application of insecticide for termite control and its effect on yield contributing characters in sugarcane. Sugar Tech 3: 146-153. https://doi.org/10.1007/BF02956807 DOI: https://doi.org/10.1007/BF02956807

Mattos, B.D.; da Silva, L.R.; de Souza, I.R.; Magalhães, W.L.E.; Leme, D.M. 2019. Slow delivery of biocide from nanostructured, microscaled, particles reduces its phytoxicity: A model investigation. Journal of Hazardous Materials 5(367): 513-519. https://doi.org/10.1016/j.jhazmat.2018.12.117 DOI: https://doi.org/10.1016/j.jhazmat.2018.12.117

Oliveira, J.L.D.; Campos, E.V.R.; Pereira, A.E.S.; Pasquoto, T.; Lima, R.; Grillo, R.; Andrade, D.J.; de Santos, F.A.D.; Fraceto, L.F. 2018. Zein nanoparticles as eco-friendly carrier systems for botanical repellents aiming sustainable agriculture. Journal of Agricultural and Food Chemistry 66: 1330-1340. https://doi.org/10.1021/acs.jafc.7b05552 DOI: https://doi.org/10.1021/acs.jafc.7b05552

Paul, E.R.; Lydia, G.H.F. 2011. Chapter 3: The chemical industry. Risks of hazardous wastes, 1st ed., Elsevier: Amsterdam, The Netherland. https://doi.org/10.1016/B978-1-4377-7842-7.00040-4 DOI: https://doi.org/10.1016/B978-1-4377-7842-7.00040-4

Qasim, M.; Majeed, M.Z.; Arshad, M.; Abbas, U.; Shehzad, M.Z.; Muhammad Raza, A.B. 2022. In-vitro toxicity of synthetic insecticides against subterranean termites, Coptotermes heimi (Isoptera: Rhinotermitidae). Pakistan Journal of Zoology 56(4):1879-1886. https://doi.org/10.17582/journal.pjz/20221110111139 DOI: https://doi.org/10.17582/journal.pjz/20221110111139

Roszaini, K.; Nor Azah, M.A.; Mailina, J.; Zaini, S.; Mohammad Faridz, Z. 2013. Toxicity and antitermite activity of the essential oils from Cinnamomum camphora, Cymbopogon nardus, Melaleuca cajuputi and Dipterocarpus sp. against Coptotermes curvignathus. Wood Science and Technology 47(6): 1273-1284. https://doi.org/10.1007/s00226-013-0576-1 DOI: https://doi.org/10.1007/s00226-013-0576-1

Roszaini, K.; Nashatul-Zaimah, N.A.; Noor Azah, M.A. 2020. Potential of Upuna borneensis and Shorea longisperma seed extracts against Coptotermes gestroi. Journal of Tropical Forest Science 32(1): 83-91. http://dx.doi.org/10.26525/jtfs32.1.83 DOI: https://doi.org/10.26525/jtfs32.1.83

Roy, A.; Bajpai, J.; Bajpai, A.K. 2009. Dynamics of controlled release of chlorpyrifos from swelling and eroding biopolymers microspheres of calcium alginate and starch. Carbohydrate Polymers 76(2): 222-231. https://doi.org/10.1016/j.carbpol.2008.10.013 DOI: https://doi.org/10.1016/j.carbpol.2008.10.013

Ruggiero, L.; Di Bartolomeo, E.; Gasperi, T.; Luisetto, I.; Talone, A.; Zurlo, F.; Peddis, D.; Ricci, M.A.; Sodo, A. 2019. Silica nanosystems for active antifouling protection: nanocapsules and mesoporous nanoparticles in controlled release applications. Journal of Alloys and Compounds 798: 144-148. https://doi.org/10.1016/j.jallcom.2019.05.215 DOI: https://doi.org/10.1016/j.jallcom.2019.05.215

Sabbouri, H.E.K.E.; Gay-Queheillard, J.; Joumaa, W.H.; Delanaud, S.; Guibourdenche, M.; Dawwiche, W.; Djekkoun, N.; Bach, N.; Ramadan, W. 2020. Does the perigestational exposure to chlorpyrifos and/or high-fat diet affect respiratory parameters and diaphragmatic muscle contractility in young rats? Food and Chemical Toxicology 140: e111322. http://doi.org/10.1016/j.fct.2020.111322 DOI: https://doi.org/10.1016/j.fct.2020.111322

Salem, M.Z.M.; Ali, M.F.; Mansour, M.M.A.; Ali, H.M.; Abdel Moneim, E.M.; Abdel-Megeed, A. 2020. Anti-termitic activity of three plant extracts, chlorpyrifos and a biogent compound (Protect) against termite Microcerotermes eugnathus Silvestri (Blattodea: Termitidae) in Egypt. Insects 11: 756-770. https://doi.org/10.3390/insects11110756 DOI: https://doi.org/10.3390/insects11110756

Song, S.; Wang, Y.; Xie, J.; Sun, B.; Zhou, N.; Shen, H.; Shen, J. 2019. Carboxymethyl chitosan modified carbon nanoparticles for controlled emamectin benzoate delivery: improved solubility, pH-responsive release, and sustainable pest control. ACS Applied Materials & Interfaces 11(37): 34258-34267. https://doi.org/10.1021/acsami.9b12564 DOI: https://doi.org/10.1021/acsami.9b12564

Srihayu Harsanti, E.S.; Martono, E.; Sudibyakto, H.A.; Sugiharto, E. 2015. Residu insektisida klorpirifos dalam tanah dan produk bawang merah Allium ascalonicum L. di sentra produksi bawang merah di Kabupanten Bantul Yogyakarta. Ecolab 9(1): 26-35. http://ejournal.forda-mof.org/ejournal-litbang/index.php/JKLH/article/view/1170 DOI: https://doi.org/10.20886/jklh.2015.9.1.26-35

Subekti, N.; Nur, H.; Fanidya, A.; Susanti, S.; Saputri, R.; Indrawati, P. 2019. Chlorpyrifos organophosphate and essential oils activities against Callosobruchus maculatus (F.) warehouse pests. Journal of Physics: Conference Series 1402: e055024. https://doi.org/10.1088/1742-6596/1402/5/055024 DOI: https://doi.org/10.1088/1742-6596/1402/5/055024

Tontul, I.; Eroglu, E.; Topuz, A. 2017. Nanoencapsulation of fish oil and essential fatty acids. In Nanoencapsulation of Food Bioactive Ingredients 2017: 103-144. https://doi.org/10.1016/B978-0-12-809740-3.00003-9 DOI: https://doi.org/10.1016/B978-0-12-809740-3.00003-9

UNEP. 2008. Finding alternatives to persistent organic pollutants (POPs) for termite management. Stockholm, Sweden. https://nature.berkeley.edu/upmc/documents/UN_termite.pdf

Venkateswara Rao, J.; Parvathi, K.; Kavitha, P.; Jakka, N.M.; Pallela, R. 2005. Effect of chlorpyrifos and monocrotophos on locomotor behaviour and acetylcholinesterase activity of subterranean termites, Odontotermes obesus. Pest Management Science 61(4): 417-421. https://doi.org/10.1002/ps.986 DOI: https://doi.org/10.1002/ps.986

Ye, Z.; Guo, J.J.; Wu, D.W.; Tan, M.Y.; Xiong, X.; Yin, Y.H.; He, G.H. 2015. Photo-responsive shell cross-linked micelles based on carboxymethyl chitosan and their application in controlled release of pesticide. Carbohydrate Polymers 132: 520-528. https://doi.org/10.1016/j.carbpol.2015.06.077 DOI: https://doi.org/10.1016/j.carbpol.2015.06.077

Zheng, T.; Chen, K.; Chen, W.; Wu, B.; Sheng, Y.; Xiao, Y. 2019. Preparation and characterisation of polylactic acid modified polyurethane microcapsules for controlled-release of chlorpyrifos. Journal of Microencapsulation 36(1): 62-71. https://doi.org/10.1080/02652048.2019.1599075 DOI: https://doi.org/10.1080/02652048.2019.1599075

Downloads

Published

2024-07-12

How to Cite

Kadir , R. ., Khadiran, T. ., Mat Arip , M. N. ., & Lipeh , S. . (2024). Toxicity and repellency of chlorpyrifos nanocapsules against subterranean termite Coptotermes curvignathus. Maderas. Ciencia Y Tecnología, 26. https://doi.org/10.22320/s0718221x/2024.44

Issue

Section

Article