Functional finishes on textile fabrics: The potential of nanostructures of cellulose and lignin

Authors

  • Izabelli Cristiani Barcelar Zakaluk Programa de Pós-Graduação em Engenharia Florestal, Universidade Federal do Paraná (UFPR). Curitiba, Brasil. https://orcid.org/0000-0003-4399-7608
  • Gabriel Goetten de Lima Programa de Pós-Graduação em Engenharia e Ciência dos Materiais, Centro Politécnico, Universidade Federal do Paraná (UFPR). Curitiba, Brasil. https://orcid.org/0000-0002-6161-4626
  • Mayara Carneiro Programa de Pós-Graduação em Engenharia Florestal, Universidade Federal do Paraná (UFPR). Curitiba, Brasil.
  • Silvana Nisgoski Programa de Pós-Graduação em Engenharia Florestal, Universidade Federal do Paraná (UFPR). Curitiba, Brasil. https://orcid.org/0000-0001-9595-9131
  • Graciela Ines Bolzon de Muniz Programa de Pós-Graduação em Engenharia Florestal
  • Pedro Henrique Gonzalez de Cademartori Programa de Pós-Graduação em Engenharia Florestal, Universidade Federal do Paraná (UFPR). Curitiba, Brasil. https://orcid.org/0000-0003-3295-6907

DOI:

https://doi.org/10.22320/s0718221x/2025.43

Keywords:

Adhesion, Colorimetry (CIELab), wettability, contact angle, cellulose nanofibrils, lignin nanoparticles, tensile strength, functional textile coatings

Abstract

Nanostructures have gained increasing attention for their ability to impart novel functionalities to materials, yet their application in sustainable textile finishing remains limited. The textile industry continues to face challenges in developing coatings that combine performance, durability, and environmental responsibility. In this context, renewable nanostructures such as nanocellulose and nanolignin represent promisimg alternatives for integrating bio-based materials into textile coatings while reducing dependence on fully synthetic agents. As a functional finishing approach for textile applications, this study coated cotton fabrics with cellulose and lignin nanostructures. To improve the adhesion of these nanostructures, the exhaust method was employed along with binders during the nanocoating process. Glycerol and silicone elastomer were applied as binding agents under different coating conditions. The morphology, surface wettability, color variation, and mechanical properties of the coated fabrics were evaluated. Nanocoating produced a heterogeneous surface layer, especially with silicone, and adhesion improved when a fixing agent was applied. Both glycerol and silicone proved effective as binders: glycerol enhanced flexibility and tensile strength, while silicone increased adhesion and weight gain. Treatments with nanolignin and silicone produced hydrophobic surfaces, whereas those with nanocellulose and glycerol were predominantly hydrophilic. Nanocellulose treatments showed minimal color variations, while lignin-based coatings resulted in darker tones. These findings demonstrate that wood-derived nanostructures can effectively modify cotton fabrics, combining renewable and synthetic components to create functional and more sustainable textile finishes. Overall, this work represents a relevant step toward integration of bio-based materials in advanced textile surface modification.

Downloads

Download data is not yet available.

Author Biographies

Izabelli Cristiani Barcelar Zakaluk, Programa de Pós-Graduação em Engenharia Florestal, Universidade Federal do Paraná (UFPR). Curitiba, Brasil.

Biography

Gabriel Goetten de Lima, Programa de Pós-Graduação em Engenharia e Ciência dos Materiais, Centro Politécnico, Universidade Federal do Paraná (UFPR). Curitiba, Brasil.

Biography

Mayara Carneiro, Programa de Pós-Graduação em Engenharia Florestal, Universidade Federal do Paraná (UFPR). Curitiba, Brasil.

Biography

Silvana Nisgoski, Programa de Pós-Graduação em Engenharia Florestal, Universidade Federal do Paraná (UFPR). Curitiba, Brasil.

Biography

Graciela Ines Bolzon de Muniz, Programa de Pós-Graduação em Engenharia Florestal

Biography

Pedro Henrique Gonzalez de Cademartori, Programa de Pós-Graduação em Engenharia Florestal, Universidade Federal do Paraná (UFPR). Curitiba, Brasil.

Biography

References

Abate Worku, L.; Kumar Bachheti, R.; Getachew Tadesse, M.; Bachheti, A.; Ali, D.; Kumar, G.; Kumar Chaubey, K. 2023. Synthesis of lignin nanoparticles from Oxytenanthera abyssinica by nanoprecipitation method followed by ultrasonication for the nanocomposite application. Journal of King Saud University - Science 35(7): 102793. https://doi.org/10.1016/j.jksus.2023.102793 DOI: https://doi.org/10.1016/j.jksus.2023.102793

Agustin, M.B.; Penttilä, P.A.; Lahtinen, M.; Mikkonen, K.S. 2019. Rapid and Direct Preparation of Lignin Nanoparticles from Alkaline Pulping Liquor by Mild Ultrasonication. ACS Sustainable Chemistry & Engineering 7(24): 19925-19934. https://doi.org/10.1021/acssuschemeng.9b05445 DOI: https://doi.org/10.1021/acssuschemeng.9b05445

Alam, I.K.; Moury, N.N.; Islam, M.T. 2021. Chapter 8. Synthetic and natural UV protective agents for textile finishing. In: Sustainable Practices in the Textile Industry. Rather, L.J.; Shabbir, M.; Haji, A. (Eds.). Scrivener Publishing LLC: Beverly, USA. https://doi.org/10.1002/9781119818915.ch8 DOI: https://doi.org/10.1002/9781119818915.ch8

Amin, M.; Akbar, M.; Amin, S. 2007. Hydrophobicity of silicone rubber used for outdoor insulation (an overview). Reviews on Advanced Materials Science 16(1-2): 10-26. https://ipme.ru/e-journals/RAMS/no_11607/amin.pdf

American Society for Testing and Materials. ASTM. 2019. Standard test method for thickness of textile materials. ASTM D1777-96. ASTM: West Conshohocken, USA. https://doi.org/10.1520/D1777-96R19 DOI: https://doi.org/10.1520/D1777-96R19

American Society for Testing and Materials. ASTM. 2020. Standard test method for breaking strength and elongation of textile fabrics (Grab test). ASTM D5034-20. ASTM: West Conshohocken, USA. https://www.astm.org/d5034-21.htm

Bartolome, M.J.; Bischof, S.; Pellis, A.; Konnerth, J.; Wimmer, R.; Weber, H.; Schwaiger, N.; Guebitz, G.M.; Nyanhongo, G.S. 2020. Enzymatic synthesis and tailoring lignin properties: A systematic study on the effects of plasticizers. Polymer 202. e122725. https://doi.org/10.1016/j.polymer.2020.122725 DOI: https://doi.org/10.1016/j.polymer.2020.122725

Bashari, A.; Shakeri, M.; Shirvan, A.R. 2018. UV-protective textiles. In: The Impact and Prospects of Green Chemistry for Textile Technology. Shahid-ul-Islam; Butola, B.S. (Eds.). Woodhead Publishing: Sawston, UK. https://doi.org/10.1016/b978-0-08-102491-1.00012-5 DOI: https://doi.org/10.1016/B978-0-08-102491-1.00012-5

Beisl, S.; Friedl, A.; Miltner, A. 2017. Lignin from micro- to nanosize: Applications. International Journal of Molecular Sciences 18(11). e2367. https://doi.org/10.3390/ijms18112367 DOI: https://doi.org/10.3390/ijms18112367

Boerjan, W.; Ralph, J.; Baucher, M. 2003. Lignin Biosynthesis. Annual Review of Plant Biology 54: 519-546. https://doi.org/10.1146/annurev.arplant.54.031902.134938 DOI: https://doi.org/10.1146/annurev.arplant.54.031902.134938

Castelló, M.L.; Dweck, J.; Aranda, D.A.G. 2009. Thermal stability and water content determination of glycerol by thermogravimetry. Journal of Thermal Analysis and Calorimetry 97: 627-630. https://doi.org/10.1007/s10973-009-0070-z DOI: https://doi.org/10.1007/s10973-009-0070-z

Colorado, H.A.; Velásquez, E.I.G.; Monteiro, S.N. 2020. Sustainability of additive manufacturing: the circular economy of materials and environmental perspectives. Journal of Materials Research and Technology 9(4): 8221-8234. https://doi.org/10.1016/j.jmrt.2020.04.062 DOI: https://doi.org/10.1016/j.jmrt.2020.04.062

Dąbrowski, Ł. 2024. Non-Target Screening of Chemicals in Selected Cotton Products by GC/MS and Their Safety Assessment. Molecules 29. e3584. https://doi.org/10.3390/molecules29153584 DOI: https://doi.org/10.3390/molecules29153584

Edmundson, D.D.; Gustafson, R.R.; Dichiara, A.B. 2024. Sonochemical synthesis of lignin nanoparticles and their applications in poly(vinyl) alcohol composites. International Journal of Biological Macromolecules 254(1): e127487. https://doi.org/10.1016/j.ijbiomac.2023.127487 DOI: https://doi.org/10.1016/j.ijbiomac.2023.127487

Eduok, U.; Faye, O.; Szpunar, J. 2017. Recent developments and applications of protective silicone coatings: A review of PDMS functional materials. Progress in Organic Coatings 111: 124-163. https://doi.org/10.1016/j.porgcoat.2017.05.012 DOI: https://doi.org/10.1016/j.porgcoat.2017.05.012

Fernandes, A.; Cruz-Lopes, L.; Esteves, B.; Evtuguin, D. 2023. Nanotechnology applied to cellulosic materials. Materials 16(8): e3104. https://doi.org/10.3390/ma16083104 DOI: https://doi.org/10.3390/ma16083104

Figueiredo, P.; Lintinen, K.; Hirvonen, J.T.; Kostiainen, M.A.; Santos, H.A. 2018. Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications. Progress in Materials Science 93: 233-269. https://doi.org/10.1016/j.pmatsci.2017.12.001 DOI: https://doi.org/10.1016/j.pmatsci.2017.12.001

Gilca, I.A.; Popa, V.I.; Crestini, C. 2015. Obtaining lignin nanoparticles by sonication. Ultrasonics Sonochemistry 23: 369-375. https://doi.org/10.1016/j.ultsonch.2014.08.021 DOI: https://doi.org/10.1016/j.ultsonch.2014.08.021

Graeff, C.; Leão, A.L.; Rosa, A.H.; Tusset, A.M.; Madureira, A.B.; Pontes Junior, B.R. de; Cherian, B.M.; Gonçalves, D.F.C.; Bothelo, E.C.; Edwards, E.R. 2012. Nanotecnologia: Ciência e Engenharia. Cultura Acadêmica: São Paulo, BR. http://hdl.handle.net/11449/123647

Grifoni, D.; Bacci, L.; Zipoli, G.; Carreras, G.; Baronti, S.; Sabatini, F. 2009. Laboratory and outdoor assessment of UV protection offered by flax and hemp fabrics dyed with natural dyes. Photochemistry and Photobiology 85: 313-320. https://doi.org/10.1111/j.1751-1097.2008.00439.x DOI: https://doi.org/10.1111/j.1751-1097.2008.00439.x

Hodgson, K.; Berg, J. 1988. Dynamic Wettability Properties of Single Wood Pulp Fibers and Their Relationship to Absorbency. Wood Fiber Science 20: 3-17. https://wfs.swst.org/index.php/wfs/article/view/2179

Hussin, M.H.; Appaturi, J.N.; Poh, N.E.; Latif, N.H.A.; Brosse, N.; Ziegler-Devin, I.; Vahabi, H.; Syamani, F.A.; Fatriasari, W.; Solihat, N.N.; Karimah, A.; Iswanto, A.H.; Sekeri, S.H.; Mohamad Ibrahim, M.N. 2022. A recent advancement on preparation, characterization and application of nanolignin. International Journal of Biological Macromolecules 200: 303-326. https://doi.org/10.1016/j.ijbiomac.2022.01.007 DOI: https://doi.org/10.1016/j.ijbiomac.2022.01.007

Ji, Q.; Zhou, C.; Li, Z.; Boateng, I.D.; Liu, X. 2023. Is nanocellulose a good substitute for non-renewable raw materials? A comprehensive review of the state of the art, preparations, and industrial applications. Industrial Crops and Products 202. e117093. https://doi.org/10.1016/j.indcrop.2023.117093 DOI: https://doi.org/10.1016/j.indcrop.2023.117093

Jiang, Z.; Ma, Y.; Guo, X.; Remón, J.; Tsang, D.C.W.; Hu, C.; Shi, B. 2021. Sustainable production of lignin micro-/nanoparticles (LMNPs) from biomass: influence of the type of biomass on their self-assembly capability and physicochemical properties. Journal of Hazardous Materials 403. e123701. https://doi.org/10.1016/j.jhazmat.2020.123701 DOI: https://doi.org/10.1016/j.jhazmat.2020.123701

Kontturi, E. 2018. Nanocellulose and Sustainability: Production, Properties, Applications, and Case Studies. CRC Press: Boca Raton, USA. https://doi.org/10.1201/9781351262927 DOI: https://doi.org/10.1201/9781351262927

Lopes, M.; Carneiro, M.E.; de Cademartori, P.H.G.; Nisgoski, S.; de Muniz, G.I.B. 2023. Extraction and characterization of two residual lignins from eucalyptus wood. Ciência Florestal 33(2): 1-19. https://doi.org/10.5902/1980509868976 DOI: https://doi.org/10.5902/1980509868976

Lopes, M.; Carneiro, M.E.; Andrade, A.S.; Potulski, D.C. 2017. Hidrólise ácida para produção de nano lignina em pó. Biofix Scientific Journal 3(1): 41-47. https://doi.org/10.5380/biofix.v3i1.56180 DOI: https://doi.org/10.5380/biofix.v3i1.56180

Ma, M.; Dai, L.; Hui, L.; Si, C.; Liu, Z.; Ni, Y. 2019. A Facile Preparation of Super Long-Term Stable Lignin Nanoparticles from Black Liquor. ChemSusChem 12(24): 5239-5245. https://doi.org/10.1002/cssc.201902287 DOI: https://doi.org/10.1002/cssc.201902287

Martins, T.G.; Chiapetta, S.C.; Carvalho, L.J.; Cassella, R.J. 2015. Comparison of the efficiency of different techniques (exhaustion and padding) for the fixation of permethrin in fabrics. Revista Virtual de Química 7(4): 1119-1129. https://doi.org/10.5935/1984-6835.20150062 DOI: https://doi.org/10.5935/1984-6835.20150062

Nadeem, H.; Athar, M.; Dehghani, M.; Garnier, G.; Batchelor, W. 2022. Recent advancements, trends, fundamental challenges and opportunities in spray deposited cellulose nanofibril films for packaging applications. Science of The Total Environment 836. e155654. https://doi.org/10.1016/j.scitotenv.2022.155654 DOI: https://doi.org/10.1016/j.scitotenv.2022.155654

Nechyporchuk, O.; Yu, J.; Nierstrasz, V.A.; Bordes, R. 2017. Cellulose Nanofibril-Based Coatings of Woven Cotton Fabrics for Improved Inkjet Printing with a Potential in E-Textile Manufacturing. ACS Sustainable Chemistry & Engineering 5(6): 4793-4800. https://doi.org/10.1021/acssuschemeng.7b00200 DOI: https://doi.org/10.1021/acssuschemeng.7b00200

Panchal, P.; Ogunsona, E.; Mekonnen, T. 2019. Trends in advanced functional material applications of nanocellulose. Processes 7(1). e10. https://doi.org/10.3390/pr7010010 DOI: https://doi.org/10.3390/pr7010010

Pitcher, M.L.; Koshani, R.; Sheikhi, A. 2024. Chemical structure-property relationships in nanocelluloses. Journal of Polymer Science 62(1): 9-31. https://doi.org/10.1002/pol.20230558 DOI: https://doi.org/10.1002/pol.20230558

Pradeep, H.K.; Patel, D.H.; Onkarappa, H.S.; Pratiksha, C.C.; Prasanna, G.D. 2022. Role of nanocellulose in industrial and pharmaceutical sectors - a review. International Journal of Biological Macromolecules 207: 1038-1047. https://doi.org/10.1016/j.ijbiomac.2022.03.171 DOI: https://doi.org/10.1016/j.ijbiomac.2022.03.171

Prasad, S.R.; Kumbhar, V.B.; Prasad, N.R. 2024. Applications of nanotechnology in textile: a review. ES Food & Agroforestry 15. e1019. https://doi.org/10.30919/esfaf1019 DOI: https://doi.org/10.30919/esfaf1019

Qian, Y.; Wang, T.; Qiu, X.; Zhao, D.; Liu, D.; Deng, Y. 2016. Conductivity Enhancement of Poly(3,4-ethylenedioxythiophene)/Lignosulfonate Acid Complexes via Pickering Emulsion Polymerization. ACS Sustainable Chemistry & Engineering 4(12): 7193-7199. https://doi.org/10.1021/acssuschemeng.6b02135 DOI: https://doi.org/10.1021/acssuschemeng.6b02135

Rahman, O.U.; Shi, S.; Ding, J.; Wang, D.; Ahmad, S.; Yu, H. 2018. Lignin nanoparticles: synthesis, characterization and corrosion protection performance. New Journal of Chemistry 42: 3415-3425. https://doi.org/10.1039/C7NJ04103A DOI: https://doi.org/10.1039/C7NJ04103A

Raman, A.; Sankar, A.S.D.; Anilkumar, A.; Saritha, A. 2022. Insights into the Sustainable Development of Lignin-Based Textiles for Functional Applications. Macromolecular Materials and Engineering 307. e2200114. https://doi.org/10.1002/mame.202200114 DOI: https://doi.org/10.1002/mame.202200114

Salleh, M.; Mohd, R.; Yahya, A.; Abd-Aziz, S.; Hussin, H. 2023. Potential applications of lignin and its derivatives from lignocellulosic biomass. Jurnal Teknologi 85(3): 43-59. https://doi.org/10.11113/jurnalteknologi.v85.15032 DOI: https://doi.org/10.11113/jurnalteknologi.v85.15032

Sarvalkar, P.D.; Barawkar, S.D.; Karvekar, O.S.; Patil, P.D.; Prasad, S.R.; Sharma, K.K.; Prasad, N.R.; Vhatkar, R.S. 2022. A review on multifunctional nanotechnological aspects in modern textile. The Journal of The Textile Institute 114(3): 470-487. https://doi.org/10.1080/00405000.2022.2046304 DOI: https://doi.org/10.1080/00405000.2022.2046304

Sharma, M.; Marques, J.; Simões, A.; Donato, M.M.; Cardoso, O.; Gando-Ferreira, L.M. 2024. Optimization of lignin precipitation from black liquor using organic acids and its valorization by preparing lignin nanoparticles. International Journal of Biological Macromolecules 269. e131881. https://doi.org/10.1016/j.ijbiomac.2024.131881 DOI: https://doi.org/10.1016/j.ijbiomac.2024.131881

Sofiah, A.G.N.; Pasupuleti, J.; Samykano, M.; Kadirgama, K.; Koh, S.P.; Tiong, S.K.; Pandey, A.K.; Yaw, C.T.; Natarajam, S.K. 2023. Harnessing nature’s ingenuity: a comprehensive exploration of nanocellulose from production to cutting-edge applications in engineering and sciences. Polymers 15(14). e3044. https://doi.org/10.3390/polym15143044 DOI: https://doi.org/10.3390/polym15143044

Spagnuolo, L.; D’Orsi, R.; Operamolla, A. 2022. Nanocellulose for paper and textile coating: the importance of surface chemistry. ChemPlusChem 87(8). e202200204. https://doi.org/10.1002/cplu.202200204 DOI: https://doi.org/10.1002/cplu.202200204

Syduzzaman, M.; Hassan, A.; Anik, H.R.; Akter, M.; Islam, M.R. 2023. Nanotechnology for high-performance textiles: a promising frontier for innovation. ChemNanoMat 9(9). e202300205. https://doi.org/10.1002/cnma.202300205 DOI: https://doi.org/10.1002/cnma.202300205

Roy, S.; Ghosh, B.D.; Goh, K.L.; Muthoka, R.M.; Kim, J. 2022. Modulation of interfacial interactions toward strong and tough cellulose nanofiber-based transparent thin films with antifogging feature. Carbohydrate Polymers 278. e118974. https://doi.org/10.1016/j.carbpol.2021.118974 DOI: https://doi.org/10.1016/j.carbpol.2021.118974

Tahir, D.; Ramzan, M.; Karim, A.; Hu, H.; Naseem, S.; Rehan, M.; Ahmad, M.; Zhang, M. 2022. Applications of nanocellulose and nanocellulose-based composites: a review. Polymers 14. e4468. https://doi.org/10.3390/polym14214468 DOI: https://doi.org/10.3390/polym14214468

Tan, T.H.; Lee, H.V.; Dabdawb, W.A.Y.; Hamid, S.B.B.O.A.A. 2019. A review of nanocellulose in the drug-delivery system. In: Materials for Biomedical Engineering. H.A.-M.; Grumezescu, A.M. (Eds.). Elsevier: Amsterdam. https://doi.org/10.1016/B978-0-12-816913-1.00005-2 DOI: https://doi.org/10.1016/B978-0-12-816913-1.00005-2

Tang, Q.; Qian, Y.; Yang, D.; Qiu, X.; Qin, Y.; Zhou, M. 2020. Lignin-Based Nanoparticles: A Review on Their Preparations and Applications. Polymers 12(11). e2471. https://doi.org/10.3390/polym12112471 DOI: https://doi.org/10.3390/polym12112471

Tozluoglu, A.; Ates, S.; Durmaz, E.; Sertkaya, S.; Arslan, R.; Ozcelik, O.; Candan, Z. 2023. Nanocellulose in paper and board coating. In: Taghiyari, H.R.; Morrell, J.J.; Husen, A. (Eds.). Emerging Nanomaterials: Opportunities and Challenges in Forestry Sectors. Springer International Publishing: Cham. pp. 197-298. https://doi.org/10.1007/978-3-031-17378-3_8 DOI: https://doi.org/10.1007/978-3-031-17378-3_8

Yadav, V.K.; Gupta, N.; Kumar, P.; Dashti, M.G.; Tirth, V.; Khan, S.H.; Yadav, K.K.; Islam, S.; Choudhary, N.; Algahtani, A. 2022. Recent advances in synthesis and degradation of lignin and lignin nanoparticles and their emerging applications in nanotechnology. Materials 15(3). e0953. https://doi.org/10.3390/ma15030953 DOI: https://doi.org/10.3390/ma15030953

Yu, X.; Yang, B.; Zhu, W.; Deng, T.; Pu, Y.; Ragauskas, A.; Wang, H. 2023. Towards functionalized lignin and its derivatives for high-value material applications. Industrial Crops and Products 200. e116824. https://doi.org/10.1016/j.indcrop.2023.116824 DOI: https://doi.org/10.1016/j.indcrop.2023.116824

Zhang, Y.; Deng, W.; Wu, M.; Rahmaninia, M.; Xu, C.; Li, B. 2023. Tailoring functionality of nanocellulose: current status and critical challenges. Nanomaterials 13(9): 1-22. https://doi.org/10.3390/nano13091489 DOI: https://doi.org/10.3390/nano13091489

Zhao, L.; Li, C.; Xiong, J.; Zhang, S.; Yao, J.; Chen, X. 2009. Online hydrophobicity measurement for silicone rubber insulators on transmission lines. IEEE Transactions on Power Delivery 24(2): 806-813. https://doi.org/10.1109/TPWRD.2008.2005654 DOI: https://doi.org/10.1109/TPWRD.2008.2005654

Zhu, B.; Xu, Y.; Xu, H. 2022. Preparation and application of lignin nanoparticles: a review. Nano Futures 6(3). e32004. https://doi.org/10.1088/2399-1984/ac8400 DOI: https://doi.org/10.1088/2399-1984/ac8400

Downloads

Published

2025-12-01

How to Cite

Zakaluk, I. C. B. ., Goetten de Lima, G. ., Carneiro, M. ., Nisgoski, S. ., Bolzon de Muniz, G. I. ., & Gonzalez de Cademartori, P. H. . (2025). Functional finishes on textile fabrics: The potential of nanostructures of cellulose and lignin. Maderas. Ciencia Y Tecnología, 27, e4325. https://doi.org/10.22320/s0718221x/2025.43

Issue

Section

Article

Most read articles by the same author(s)