Functional finishes on textile fabrics: The potential of nanostructures of cellulose and lignin
DOI:
https://doi.org/10.22320/s0718221x/2025.43Keywords:
Adhesion, Colorimetry (CIELab), wettability, contact angle, cellulose nanofibrils, lignin nanoparticles, tensile strength, functional textile coatingsAbstract
Nanostructures have gained increasing attention for their ability to impart novel functionalities to materials, yet their application in sustainable textile finishing remains limited. The textile industry continues to face challenges in developing coatings that combine performance, durability, and environmental responsibility. In this context, renewable nanostructures such as nanocellulose and nanolignin represent promisimg alternatives for integrating bio-based materials into textile coatings while reducing dependence on fully synthetic agents. As a functional finishing approach for textile applications, this study coated cotton fabrics with cellulose and lignin nanostructures. To improve the adhesion of these nanostructures, the exhaust method was employed along with binders during the nanocoating process. Glycerol and silicone elastomer were applied as binding agents under different coating conditions. The morphology, surface wettability, color variation, and mechanical properties of the coated fabrics were evaluated. Nanocoating produced a heterogeneous surface layer, especially with silicone, and adhesion improved when a fixing agent was applied. Both glycerol and silicone proved effective as binders: glycerol enhanced flexibility and tensile strength, while silicone increased adhesion and weight gain. Treatments with nanolignin and silicone produced hydrophobic surfaces, whereas those with nanocellulose and glycerol were predominantly hydrophilic. Nanocellulose treatments showed minimal color variations, while lignin-based coatings resulted in darker tones. These findings demonstrate that wood-derived nanostructures can effectively modify cotton fabrics, combining renewable and synthetic components to create functional and more sustainable textile finishes. Overall, this work represents a relevant step toward integration of bio-based materials in advanced textile surface modification.
Downloads
References
Abate Worku, L.; Kumar Bachheti, R.; Getachew Tadesse, M.; Bachheti, A.; Ali, D.; Kumar, G.; Kumar Chaubey, K. 2023. Synthesis of lignin nanoparticles from Oxytenanthera abyssinica by nanoprecipitation method followed by ultrasonication for the nanocomposite application. Journal of King Saud University - Science 35(7): 102793. https://doi.org/10.1016/j.jksus.2023.102793 DOI: https://doi.org/10.1016/j.jksus.2023.102793
Agustin, M.B.; Penttilä, P.A.; Lahtinen, M.; Mikkonen, K.S. 2019. Rapid and Direct Preparation of Lignin Nanoparticles from Alkaline Pulping Liquor by Mild Ultrasonication. ACS Sustainable Chemistry & Engineering 7(24): 19925-19934. https://doi.org/10.1021/acssuschemeng.9b05445 DOI: https://doi.org/10.1021/acssuschemeng.9b05445
Alam, I.K.; Moury, N.N.; Islam, M.T. 2021. Chapter 8. Synthetic and natural UV protective agents for textile finishing. In: Sustainable Practices in the Textile Industry. Rather, L.J.; Shabbir, M.; Haji, A. (Eds.). Scrivener Publishing LLC: Beverly, USA. https://doi.org/10.1002/9781119818915.ch8 DOI: https://doi.org/10.1002/9781119818915.ch8
Amin, M.; Akbar, M.; Amin, S. 2007. Hydrophobicity of silicone rubber used for outdoor insulation (an overview). Reviews on Advanced Materials Science 16(1-2): 10-26. https://ipme.ru/e-journals/RAMS/no_11607/amin.pdf
American Society for Testing and Materials. ASTM. 2019. Standard test method for thickness of textile materials. ASTM D1777-96. ASTM: West Conshohocken, USA. https://doi.org/10.1520/D1777-96R19 DOI: https://doi.org/10.1520/D1777-96R19
American Society for Testing and Materials. ASTM. 2020. Standard test method for breaking strength and elongation of textile fabrics (Grab test). ASTM D5034-20. ASTM: West Conshohocken, USA. https://www.astm.org/d5034-21.htm
Bartolome, M.J.; Bischof, S.; Pellis, A.; Konnerth, J.; Wimmer, R.; Weber, H.; Schwaiger, N.; Guebitz, G.M.; Nyanhongo, G.S. 2020. Enzymatic synthesis and tailoring lignin properties: A systematic study on the effects of plasticizers. Polymer 202. e122725. https://doi.org/10.1016/j.polymer.2020.122725 DOI: https://doi.org/10.1016/j.polymer.2020.122725
Bashari, A.; Shakeri, M.; Shirvan, A.R. 2018. UV-protective textiles. In: The Impact and Prospects of Green Chemistry for Textile Technology. Shahid-ul-Islam; Butola, B.S. (Eds.). Woodhead Publishing: Sawston, UK. https://doi.org/10.1016/b978-0-08-102491-1.00012-5 DOI: https://doi.org/10.1016/B978-0-08-102491-1.00012-5
Beisl, S.; Friedl, A.; Miltner, A. 2017. Lignin from micro- to nanosize: Applications. International Journal of Molecular Sciences 18(11). e2367. https://doi.org/10.3390/ijms18112367 DOI: https://doi.org/10.3390/ijms18112367
Boerjan, W.; Ralph, J.; Baucher, M. 2003. Lignin Biosynthesis. Annual Review of Plant Biology 54: 519-546. https://doi.org/10.1146/annurev.arplant.54.031902.134938 DOI: https://doi.org/10.1146/annurev.arplant.54.031902.134938
Castelló, M.L.; Dweck, J.; Aranda, D.A.G. 2009. Thermal stability and water content determination of glycerol by thermogravimetry. Journal of Thermal Analysis and Calorimetry 97: 627-630. https://doi.org/10.1007/s10973-009-0070-z DOI: https://doi.org/10.1007/s10973-009-0070-z
Colorado, H.A.; Velásquez, E.I.G.; Monteiro, S.N. 2020. Sustainability of additive manufacturing: the circular economy of materials and environmental perspectives. Journal of Materials Research and Technology 9(4): 8221-8234. https://doi.org/10.1016/j.jmrt.2020.04.062 DOI: https://doi.org/10.1016/j.jmrt.2020.04.062
Dąbrowski, Ł. 2024. Non-Target Screening of Chemicals in Selected Cotton Products by GC/MS and Their Safety Assessment. Molecules 29. e3584. https://doi.org/10.3390/molecules29153584 DOI: https://doi.org/10.3390/molecules29153584
Edmundson, D.D.; Gustafson, R.R.; Dichiara, A.B. 2024. Sonochemical synthesis of lignin nanoparticles and their applications in poly(vinyl) alcohol composites. International Journal of Biological Macromolecules 254(1): e127487. https://doi.org/10.1016/j.ijbiomac.2023.127487 DOI: https://doi.org/10.1016/j.ijbiomac.2023.127487
Eduok, U.; Faye, O.; Szpunar, J. 2017. Recent developments and applications of protective silicone coatings: A review of PDMS functional materials. Progress in Organic Coatings 111: 124-163. https://doi.org/10.1016/j.porgcoat.2017.05.012 DOI: https://doi.org/10.1016/j.porgcoat.2017.05.012
Fernandes, A.; Cruz-Lopes, L.; Esteves, B.; Evtuguin, D. 2023. Nanotechnology applied to cellulosic materials. Materials 16(8): e3104. https://doi.org/10.3390/ma16083104 DOI: https://doi.org/10.3390/ma16083104
Figueiredo, P.; Lintinen, K.; Hirvonen, J.T.; Kostiainen, M.A.; Santos, H.A. 2018. Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications. Progress in Materials Science 93: 233-269. https://doi.org/10.1016/j.pmatsci.2017.12.001 DOI: https://doi.org/10.1016/j.pmatsci.2017.12.001
Gilca, I.A.; Popa, V.I.; Crestini, C. 2015. Obtaining lignin nanoparticles by sonication. Ultrasonics Sonochemistry 23: 369-375. https://doi.org/10.1016/j.ultsonch.2014.08.021 DOI: https://doi.org/10.1016/j.ultsonch.2014.08.021
Graeff, C.; Leão, A.L.; Rosa, A.H.; Tusset, A.M.; Madureira, A.B.; Pontes Junior, B.R. de; Cherian, B.M.; Gonçalves, D.F.C.; Bothelo, E.C.; Edwards, E.R. 2012. Nanotecnologia: Ciência e Engenharia. Cultura Acadêmica: São Paulo, BR. http://hdl.handle.net/11449/123647
Grifoni, D.; Bacci, L.; Zipoli, G.; Carreras, G.; Baronti, S.; Sabatini, F. 2009. Laboratory and outdoor assessment of UV protection offered by flax and hemp fabrics dyed with natural dyes. Photochemistry and Photobiology 85: 313-320. https://doi.org/10.1111/j.1751-1097.2008.00439.x DOI: https://doi.org/10.1111/j.1751-1097.2008.00439.x
Hodgson, K.; Berg, J. 1988. Dynamic Wettability Properties of Single Wood Pulp Fibers and Their Relationship to Absorbency. Wood Fiber Science 20: 3-17. https://wfs.swst.org/index.php/wfs/article/view/2179
Hussin, M.H.; Appaturi, J.N.; Poh, N.E.; Latif, N.H.A.; Brosse, N.; Ziegler-Devin, I.; Vahabi, H.; Syamani, F.A.; Fatriasari, W.; Solihat, N.N.; Karimah, A.; Iswanto, A.H.; Sekeri, S.H.; Mohamad Ibrahim, M.N. 2022. A recent advancement on preparation, characterization and application of nanolignin. International Journal of Biological Macromolecules 200: 303-326. https://doi.org/10.1016/j.ijbiomac.2022.01.007 DOI: https://doi.org/10.1016/j.ijbiomac.2022.01.007
Ji, Q.; Zhou, C.; Li, Z.; Boateng, I.D.; Liu, X. 2023. Is nanocellulose a good substitute for non-renewable raw materials? A comprehensive review of the state of the art, preparations, and industrial applications. Industrial Crops and Products 202. e117093. https://doi.org/10.1016/j.indcrop.2023.117093 DOI: https://doi.org/10.1016/j.indcrop.2023.117093
Jiang, Z.; Ma, Y.; Guo, X.; Remón, J.; Tsang, D.C.W.; Hu, C.; Shi, B. 2021. Sustainable production of lignin micro-/nanoparticles (LMNPs) from biomass: influence of the type of biomass on their self-assembly capability and physicochemical properties. Journal of Hazardous Materials 403. e123701. https://doi.org/10.1016/j.jhazmat.2020.123701 DOI: https://doi.org/10.1016/j.jhazmat.2020.123701
Kontturi, E. 2018. Nanocellulose and Sustainability: Production, Properties, Applications, and Case Studies. CRC Press: Boca Raton, USA. https://doi.org/10.1201/9781351262927 DOI: https://doi.org/10.1201/9781351262927
Lopes, M.; Carneiro, M.E.; de Cademartori, P.H.G.; Nisgoski, S.; de Muniz, G.I.B. 2023. Extraction and characterization of two residual lignins from eucalyptus wood. Ciência Florestal 33(2): 1-19. https://doi.org/10.5902/1980509868976 DOI: https://doi.org/10.5902/1980509868976
Lopes, M.; Carneiro, M.E.; Andrade, A.S.; Potulski, D.C. 2017. Hidrólise ácida para produção de nano lignina em pó. Biofix Scientific Journal 3(1): 41-47. https://doi.org/10.5380/biofix.v3i1.56180 DOI: https://doi.org/10.5380/biofix.v3i1.56180
Ma, M.; Dai, L.; Hui, L.; Si, C.; Liu, Z.; Ni, Y. 2019. A Facile Preparation of Super Long-Term Stable Lignin Nanoparticles from Black Liquor. ChemSusChem 12(24): 5239-5245. https://doi.org/10.1002/cssc.201902287 DOI: https://doi.org/10.1002/cssc.201902287
Martins, T.G.; Chiapetta, S.C.; Carvalho, L.J.; Cassella, R.J. 2015. Comparison of the efficiency of different techniques (exhaustion and padding) for the fixation of permethrin in fabrics. Revista Virtual de Química 7(4): 1119-1129. https://doi.org/10.5935/1984-6835.20150062 DOI: https://doi.org/10.5935/1984-6835.20150062
Nadeem, H.; Athar, M.; Dehghani, M.; Garnier, G.; Batchelor, W. 2022. Recent advancements, trends, fundamental challenges and opportunities in spray deposited cellulose nanofibril films for packaging applications. Science of The Total Environment 836. e155654. https://doi.org/10.1016/j.scitotenv.2022.155654 DOI: https://doi.org/10.1016/j.scitotenv.2022.155654
Nechyporchuk, O.; Yu, J.; Nierstrasz, V.A.; Bordes, R. 2017. Cellulose Nanofibril-Based Coatings of Woven Cotton Fabrics for Improved Inkjet Printing with a Potential in E-Textile Manufacturing. ACS Sustainable Chemistry & Engineering 5(6): 4793-4800. https://doi.org/10.1021/acssuschemeng.7b00200 DOI: https://doi.org/10.1021/acssuschemeng.7b00200
Panchal, P.; Ogunsona, E.; Mekonnen, T. 2019. Trends in advanced functional material applications of nanocellulose. Processes 7(1). e10. https://doi.org/10.3390/pr7010010 DOI: https://doi.org/10.3390/pr7010010
Pitcher, M.L.; Koshani, R.; Sheikhi, A. 2024. Chemical structure-property relationships in nanocelluloses. Journal of Polymer Science 62(1): 9-31. https://doi.org/10.1002/pol.20230558 DOI: https://doi.org/10.1002/pol.20230558
Pradeep, H.K.; Patel, D.H.; Onkarappa, H.S.; Pratiksha, C.C.; Prasanna, G.D. 2022. Role of nanocellulose in industrial and pharmaceutical sectors - a review. International Journal of Biological Macromolecules 207: 1038-1047. https://doi.org/10.1016/j.ijbiomac.2022.03.171 DOI: https://doi.org/10.1016/j.ijbiomac.2022.03.171
Prasad, S.R.; Kumbhar, V.B.; Prasad, N.R. 2024. Applications of nanotechnology in textile: a review. ES Food & Agroforestry 15. e1019. https://doi.org/10.30919/esfaf1019 DOI: https://doi.org/10.30919/esfaf1019
Qian, Y.; Wang, T.; Qiu, X.; Zhao, D.; Liu, D.; Deng, Y. 2016. Conductivity Enhancement of Poly(3,4-ethylenedioxythiophene)/Lignosulfonate Acid Complexes via Pickering Emulsion Polymerization. ACS Sustainable Chemistry & Engineering 4(12): 7193-7199. https://doi.org/10.1021/acssuschemeng.6b02135 DOI: https://doi.org/10.1021/acssuschemeng.6b02135
Rahman, O.U.; Shi, S.; Ding, J.; Wang, D.; Ahmad, S.; Yu, H. 2018. Lignin nanoparticles: synthesis, characterization and corrosion protection performance. New Journal of Chemistry 42: 3415-3425. https://doi.org/10.1039/C7NJ04103A DOI: https://doi.org/10.1039/C7NJ04103A
Raman, A.; Sankar, A.S.D.; Anilkumar, A.; Saritha, A. 2022. Insights into the Sustainable Development of Lignin-Based Textiles for Functional Applications. Macromolecular Materials and Engineering 307. e2200114. https://doi.org/10.1002/mame.202200114 DOI: https://doi.org/10.1002/mame.202200114
Salleh, M.; Mohd, R.; Yahya, A.; Abd-Aziz, S.; Hussin, H. 2023. Potential applications of lignin and its derivatives from lignocellulosic biomass. Jurnal Teknologi 85(3): 43-59. https://doi.org/10.11113/jurnalteknologi.v85.15032 DOI: https://doi.org/10.11113/jurnalteknologi.v85.15032
Sarvalkar, P.D.; Barawkar, S.D.; Karvekar, O.S.; Patil, P.D.; Prasad, S.R.; Sharma, K.K.; Prasad, N.R.; Vhatkar, R.S. 2022. A review on multifunctional nanotechnological aspects in modern textile. The Journal of The Textile Institute 114(3): 470-487. https://doi.org/10.1080/00405000.2022.2046304 DOI: https://doi.org/10.1080/00405000.2022.2046304
Sharma, M.; Marques, J.; Simões, A.; Donato, M.M.; Cardoso, O.; Gando-Ferreira, L.M. 2024. Optimization of lignin precipitation from black liquor using organic acids and its valorization by preparing lignin nanoparticles. International Journal of Biological Macromolecules 269. e131881. https://doi.org/10.1016/j.ijbiomac.2024.131881 DOI: https://doi.org/10.1016/j.ijbiomac.2024.131881
Sofiah, A.G.N.; Pasupuleti, J.; Samykano, M.; Kadirgama, K.; Koh, S.P.; Tiong, S.K.; Pandey, A.K.; Yaw, C.T.; Natarajam, S.K. 2023. Harnessing nature’s ingenuity: a comprehensive exploration of nanocellulose from production to cutting-edge applications in engineering and sciences. Polymers 15(14). e3044. https://doi.org/10.3390/polym15143044 DOI: https://doi.org/10.3390/polym15143044
Spagnuolo, L.; D’Orsi, R.; Operamolla, A. 2022. Nanocellulose for paper and textile coating: the importance of surface chemistry. ChemPlusChem 87(8). e202200204. https://doi.org/10.1002/cplu.202200204 DOI: https://doi.org/10.1002/cplu.202200204
Syduzzaman, M.; Hassan, A.; Anik, H.R.; Akter, M.; Islam, M.R. 2023. Nanotechnology for high-performance textiles: a promising frontier for innovation. ChemNanoMat 9(9). e202300205. https://doi.org/10.1002/cnma.202300205 DOI: https://doi.org/10.1002/cnma.202300205
Roy, S.; Ghosh, B.D.; Goh, K.L.; Muthoka, R.M.; Kim, J. 2022. Modulation of interfacial interactions toward strong and tough cellulose nanofiber-based transparent thin films with antifogging feature. Carbohydrate Polymers 278. e118974. https://doi.org/10.1016/j.carbpol.2021.118974 DOI: https://doi.org/10.1016/j.carbpol.2021.118974
Tahir, D.; Ramzan, M.; Karim, A.; Hu, H.; Naseem, S.; Rehan, M.; Ahmad, M.; Zhang, M. 2022. Applications of nanocellulose and nanocellulose-based composites: a review. Polymers 14. e4468. https://doi.org/10.3390/polym14214468 DOI: https://doi.org/10.3390/polym14214468
Tan, T.H.; Lee, H.V.; Dabdawb, W.A.Y.; Hamid, S.B.B.O.A.A. 2019. A review of nanocellulose in the drug-delivery system. In: Materials for Biomedical Engineering. H.A.-M.; Grumezescu, A.M. (Eds.). Elsevier: Amsterdam. https://doi.org/10.1016/B978-0-12-816913-1.00005-2 DOI: https://doi.org/10.1016/B978-0-12-816913-1.00005-2
Tang, Q.; Qian, Y.; Yang, D.; Qiu, X.; Qin, Y.; Zhou, M. 2020. Lignin-Based Nanoparticles: A Review on Their Preparations and Applications. Polymers 12(11). e2471. https://doi.org/10.3390/polym12112471 DOI: https://doi.org/10.3390/polym12112471
Tozluoglu, A.; Ates, S.; Durmaz, E.; Sertkaya, S.; Arslan, R.; Ozcelik, O.; Candan, Z. 2023. Nanocellulose in paper and board coating. In: Taghiyari, H.R.; Morrell, J.J.; Husen, A. (Eds.). Emerging Nanomaterials: Opportunities and Challenges in Forestry Sectors. Springer International Publishing: Cham. pp. 197-298. https://doi.org/10.1007/978-3-031-17378-3_8 DOI: https://doi.org/10.1007/978-3-031-17378-3_8
Yadav, V.K.; Gupta, N.; Kumar, P.; Dashti, M.G.; Tirth, V.; Khan, S.H.; Yadav, K.K.; Islam, S.; Choudhary, N.; Algahtani, A. 2022. Recent advances in synthesis and degradation of lignin and lignin nanoparticles and their emerging applications in nanotechnology. Materials 15(3). e0953. https://doi.org/10.3390/ma15030953 DOI: https://doi.org/10.3390/ma15030953
Yu, X.; Yang, B.; Zhu, W.; Deng, T.; Pu, Y.; Ragauskas, A.; Wang, H. 2023. Towards functionalized lignin and its derivatives for high-value material applications. Industrial Crops and Products 200. e116824. https://doi.org/10.1016/j.indcrop.2023.116824 DOI: https://doi.org/10.1016/j.indcrop.2023.116824
Zhang, Y.; Deng, W.; Wu, M.; Rahmaninia, M.; Xu, C.; Li, B. 2023. Tailoring functionality of nanocellulose: current status and critical challenges. Nanomaterials 13(9): 1-22. https://doi.org/10.3390/nano13091489 DOI: https://doi.org/10.3390/nano13091489
Zhao, L.; Li, C.; Xiong, J.; Zhang, S.; Yao, J.; Chen, X. 2009. Online hydrophobicity measurement for silicone rubber insulators on transmission lines. IEEE Transactions on Power Delivery 24(2): 806-813. https://doi.org/10.1109/TPWRD.2008.2005654 DOI: https://doi.org/10.1109/TPWRD.2008.2005654
Zhu, B.; Xu, Y.; Xu, H. 2022. Preparation and application of lignin nanoparticles: a review. Nano Futures 6(3). e32004. https://doi.org/10.1088/2399-1984/ac8400 DOI: https://doi.org/10.1088/2399-1984/ac8400
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de Reconocimiento de Creative Commons CC-BY que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.






























