Fourier transform infrared spectroscopy in treated woods deteriorated by a white rot fungus

Authors

  • Ezequiel Gallio
  • Paula Zanatta
  • Débora Duarte Ribes
  • Marília Lazarotto
  • Darci Alberto Gatto
  • Rafael Beltrame

Keywords:

Chemical change, Eucalyptus dunnii, Ganoderma applanatum, Pinus elliottii, wood preservation

Abstract

This study aimed to analyze chemical changes by Fourier Transform Infrared Spectroscopy of Eucalyptus dunnii and Pinus elliottii treated woods subjected to an accelerated decay test with the white rot fungus Ganoderma applanatum. The wood test specimens (2.5x2.5x0.9 cm) were impregnated with preservative solutions of chromated copper borate and synthetic pyrethroids and carbamates with 6% concentration by a vaccum-pressure process. After a decay test of 16 weeks, the chemical changes of the treated and untreated wood samples were evaluated by Fourier Transform Infrared Spectroscopy. It was observed that the rot fungus attack caused a variation in the intensity and a displacement of spectrum peaks, indicating a change to the woods’ chemical composition after fungal exposure. The lignin / carbohydrate ratio indicated that the fungus had no preference for a specific cell wall component, pointing to a simultaneous deterioration of cellulose, hemicellulose and lignin in the treated and untreated woods. Finally, the Fourier Transform Infrared Spectroscopy technique, together with the lignin / carbohydrate ratio analysis, proved efficient in the study of the variation of the wood chemical modifications deteriorated by rot fungi.

Downloads

Download data is not yet available.

References

ALABARSE, F. G. 2009. Análise da estabilidade estrutural da esmectita sob altas pressões e altas temperaturas. 113 f. Dissertação (Mestrado em Ciência dos Materiais) – Programa de Pós-Graduação em Ciência dos Materiais, Universidade Federal de Porto Alegre, Porto Alegre, 2009.

AMERICAN SOCIETY FOR TESTING AND MATERIALS. 2005. Standard test method of accelerated laboratory test of natural decay resistance of woods. ASTM D 2017. Annual book of ASTM standards. ASTM, West Conshohocken, PA.

BACKA, S.; BROLIN, A.; NILSSON, T. 2001. Characterisation of fungal degraded birch wood by FTIR and Py-GC. Holzforschung 55(3): 225-232.

COSTA, M.; COSTA, A. F.; PASTORE, T. C. M.; BRAGA, J. W. B.; GONÇALEZ, J. C. 2011. Caracterização do ataque de fungos apodrecedores de madeiras através da colorimetria e da espectroscopia de infravermelho. Ciência Florestal 21(3): 567-577.

DARWISH, S. S.; EL HADIDI, N. M. N.; MANSOUR, M. 2013. The effect of fungal decay on Ficus sycomorus wood. International Journal of Conservation Science, 4(3): 271-282.

FACKLER, K.; SCHWANNINGER, M.; GRADINGER, C.; HINTERSTOISSER, B.; MESSNER, K. 2007. Qualitative and quantitative changes of beech wood degraded by wood-rotting basidiomycetes monitored by Fourier transform infrared spectroscopic methods and multivariate data analysis. FEMS Microbiol Lett 271: 162-169.

FACKLER, K.; SCHWANNINGER, M. 2012. How spectroscopy and microspectroscopy of degraded wood contribute to understand fungal wood decay. Applied Microbiology and Biotechnology 96: 587–599.

GALVÃO, A. P. M.; MAGALHÃES, W. L. E.; MATTOS, P. P. 2004. Processos práticos para preservar a madeira. Documentos 96, Empresa Brasileira de Pesquisa Agropecuária (Embrapa), Embrapa Florestas, 49 p.

LEBOW, S. T. 2010. Wood preservation. In: Wood handbook: wood as an engineering material. Department of Agriculture, Forest Service, Forest Products Laboratory, Wisconsin: U.S., Cap. 15, p. 1-28.

LIMA, F. C. C.; SARTORI, M. S.; SEVERO, E. T. D.; CALONEGO, F. W. 2014. Tratamento de seis espécies de Eucalyptus spp., utilizando arseniato de cobre cromatado (CCA-C) em método industrial com autoclave. Revista Científica Eletrônica de Engenharia Florestal 23(1): 71-80.

LOPES, W. A.; FASCIO, M. 2004. Esquema para interpretação de espectros de substâncias orgânicas na região do infravermelho. Química Nova 27(4): 670-673.

MODES, K. S.; LAZAROTTO, M.; BELTRAME, R.; VIVIAN, M. A.; SANTINI, E. J.; MUNIZ, M. F. B. 2012. Resistência natural das madeiras de sete espécies florestais ao fungo Pycnoporus sanguineus causador da podridão-branca. Cerne 18(3): 407-411.

PANDEY, K. K. 1999. A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. Journal of Applied Polymer Science 71(12): 1969-1975.

PANDEY, K. K.; PITMAN, A. J. 2003. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. International Biodeterioration & Biodegradation 52: 151-160.

PANDEY, K. K.; NAGVENI, H. C. 2007. Rapid characterization of brown and white rot degraded chir pine and rubber wood by FTIR spectroscopy. Holz als Roh – und Werkstoff 65(6): 477-481.

PIRES, E. N.; MERLINI, C.; AL-QURESHI, H. A.; SALMÓRIA, G. V.; BARRA, G. M. O. 2012. Efeito do tratamento alcalino de fibras de juta no comportamento mecânico de compósitos de matriz epóxi. Polímeros 22(4): 339-344.

POPESCU, C.; POPESCU, M.; VASILE, C. 2010. Characterization of fungal degraded lime wood by FT-IR and 2D IR correlation spectroscopy. Microchemical Journal 95: 377–387.

POZO, C.; DÍAZ-VISURRAGA, J.; CONTRERAS, D.; FREER, J.; RODRÍGUEZ, J. 2006. Characterization of temporal biodegradation of radiata pine by Gloeophyllum trabeum through principal component analysis-based two-dimensional correlation FTIR spectroscopy. Journal of the Chilean Chemical Society 61(2): 2878-2883.

ROWELL, R. M. 2014. Acetylation of wood – a review. International Journal of Lignocellulosic Products. 1(1): 1-28.

SCHMIDT, O. 2006. Wood and tree fungi. Biology, damage, protection, and use. Springer, Berlin, 334 p.

SHANG, J.; YAN, S.; WANG, Q. 2013. Degradations mechanism and chemical componente changes in Betula platyphylla wood by wood-rot fungi. BioResources 8(4): 6066-6077.

SINHA, E.; ROUT, S. K. 2008. Influence of fibre-surface treatment on structural, termal and mechanical properties of jute. Journal of Materials Science 43(8): 2590-2601.

SUN, B.; HUANG, A.; WANG, Y.; LIU, J. 2015. Natural bamboo (Neosinocalamus affinis Keng) fiber identification using FT-IR and 2D-IR correlation spectroscopy. Journal of Natural Fibers 12(1): 1-11.

TOMAK, E. D.; TOPALOGU, E.; GUMUSKAYA, E.; YILDIZ, U. C.; AY, N. 2013. An FT-IR study of the changes in chemical composition of bamboo degraded by brown-rot fungi. International Biodeterioration & Biodegradation 85: 131-138.

VIDAL, J. M.; EVANGELISTA, W. V.; SILVA, J. C.; JANKOWSKY, I. P. 2015. Preservação de madeiras no Brasil: histórico, cenário atual e tendências. Ciência Florestal 25(1): 257-271.

YILGOR, N.; DOGU, D.; MOORE, R.; TERZI, E.; KARTAL, S. N. 2013. Evaluation of fungal deterioration in Liquidambar orientalis Mill. heartwood by FT-IR and light microscopy. BioResources 8(2): 2805-2826.

ZHANG, X.; WANG, F.; KEER, L. M. 2015. Influence of surface modification on the microstructure and thermo-mechanical properties of bamboo fibers. Materials 8: 6597-6608.

Downloads

Published

2018-07-01

How to Cite

Gallio, E., Zanatta, P., Duarte Ribes, D., Lazarotto, M., Alberto Gatto, D., & Beltrame, R. (2018). Fourier transform infrared spectroscopy in treated woods deteriorated by a white rot fungus. Maderas-Cienc Tecnol, 20(3), 479–488. Retrieved from https://revistas.ubiobio.cl/index.php/MCT/article/view/3157

Issue

Section

Article

Most read articles by the same author(s)