Tio2-modified Pinus elliottii: A pine wood presenting increased resistance to water and ultraviolet radiation


  • Andrey Pereira Acosta
  • Paula Zanatta
  • Ezequiel Gallio
  • Nivaldo Freire
  • Marília Lazarotto
  • Pedro Lovato Gomes Jardim
  • Darci Alberto Gatto
  • Mario Lucio Moreira


Hydrophobic surface, microwave system, TiO2-modified wood, wood modification, wood protection


The aim of the present study is to subject Pinus elliottii wood specimens to TiO2-based modification in order to make it resistant to water and UV radiation. The microwave-assisted solvothermal method, which is little reported in the literature, was here in used for this purpose. The adopted methodology led to 1 % mass gain; although it was a low value, it was enough to fully coat the surface of the wood with nanoparticles to the extent of changing its characteristics and turning it into a functional material. The nanoparticle distribution on the surface of the wood changed your natural topography by increasing the surface area and, consequently, increasing the contact angle of the modified wood (approximately 130°). The leaching test showed that the wood remained coated after it was immersed in water, as well as that it did not lose itswater-repelling ability. This result demonstrates the stable interaction between the two materials, due to hydroxyl radicals found in them. The coating also protected the wood against UV radiation for 500 hours of intense exposure, besides preserving its initial color. The properties achieved through this simple and fast modification process provide an alternative to help improving the performance of the herein investigated wood species, mainly for applications in environments subjected to high solar incidence and humidity.



Download data is not yet available.


Acosta, A.P.; Beltrame, R.; Missio, A.L.; de Avila Delucis, R.; Gatto, D.A. 2020. Juvenile and mature woods from pine subjected to in situ polymerization with furfuryl alcohol. Wood Mater Sci Eng 1–6. https://doi.org/10.1080/17480272.2020.1810118

Acosta, A.P.; Labidi, J.; Schulz, H.R.; Gallio, E.; Barbosa, K.T.; Beltrame, R.; Delucis, R.D.A.; Gatto, D.A. 2020. Thermochemical and Mechanical Properties of Pine Wood Treated by In Situ Polymerization of Methyl Methacrylate (MMA). Forests 1–10. https://doi.org/10.3390/f11070768

Cappelletto, E.; Maggini, S.; Girardi, F.; Bochicchio, G.; Tessadri, B.; Di Maggio, R. 2013. Wood surface protection with differental koxysilanes: a hydrophobic barrier. Cellulose 20(6): 3131-3141. https://doi.org/10.1007/s10570-013-0038-9

Cassie, A.B.D.; Baxter, S. 1944. Wettability of porous surfaces. J Chem Soc Faraday Trans 40: 546-551. https://doi.org/10.1039/tf9444000546

Chang, H.; Tu, K.; Wang, X.; Liu, J. 2015. Fabrication of mechanically durable superhydrophobic Wood surfaces using polydimethylsiloxane and sílica nanoparticles. Rsc Adv 5(39). https://doi.org/10.1039/c5ra03070f

Cristea, M.V.; Bernard R.; Pierre, B. 2010. Enhancing the performance of exterior water Born ecoatings for Wood by inorganic nanosized UV absorbers. Prog Org Coat 69(4): 432-441. https://doi.org/10.1016/j.porgcoat.2010.08.006

Faure, B.; Salazar-Alvarez, G.; Ahniyaz, A.; Villaluenga, I.; Berriozabal, G.; De Miguel, Y.R.; Bergström, L. 2013. Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens. Sci Techol Adv Mater 14(2): 023001. https://doi.org/10.1088/1468-6996/14/2/023001

Gao, L.; Zhan, X.; Lu, Y.; Li, J.; Sun, Q. 2015. pH-dependent structure and wett ability of TiO2-based Wood surface. Mater Lett 142: 217-220. https://doi.org/10.1016/j.matlet.2014.12.035

Hon, D.N.S. 2001. Weathering and photo chemistry of wood. In Wood and Cellulosic Chemistry. Hon, D.N.S.; Nubuo, S. Marcel Dekker: New York and Basel. 512-546. https://doi.org/10.1021/ja015237p

Jin, X.; Kasal, B. 2016. Adhesion force mapping on Wood by atomic force microscopy: influence of surface roughness and tipgeometry. R Soc Open Sci 3(10): 160248. https://doi.org/10.1098/rsos.160248

Kubacka, A. Fernandez-Garcia, M.; Colon, G. 2011. Advanced nano architectures for solar photo catalytic applications. Chem Rev 112(3): 1555-1614. https://doi.org/10.1021/cr100454n

Kúdela, J. 2014. Wetting of Wood surface by a liquids of a different polarity. Wood Res SLOVAKIA 59(1): 11-24. http://www.centrumdp.sk/wr/01/02.pdf

Liu, M.; Qing, Y.; Wu, Y.; Liang, J.; Luo, S. 2015. Facile fabrication of superhydrophobic surfaces on Wood substrates via a one-stephydro thermal process. Appl Surf Sci 330: 332-338. https://doi.org/10.1016/j.apsusc.2015.01.024

Lu, Y.; Feng, M.; Zhan, H. 2014. Preparation of SiO 2–Wood composites by anultrasonic-assisted sol–gel technique. Cellulose 21(6): 4393-4403. https://doi.org/10.1007/s10570-014-0437-6

Ma, M.; Hill, R. M. 2006. Superhydrophobic surfaces. Curr Opin Colloid Interface Sci 11(4): 193-202. https://doi.org/10.1016/j.cocis.2006.06.002

Mitsui, K.; Tsuchikawa, S. 2005. Low atmospheric temperature dependence on photodegradation of wood. J Photochem Photobiol B Biol 81(2): 84-88. https://doi.org/10.1016/j.jphotobiol.2005.05.011

Rassam, G.; Abdi, Y.; Abdi, A. 2012. Deposition of TiO2 nano-particleson wood surfaces for UV and moisture protection. J Exp Nanosci 7(4): 468-476. https://doi.org/10.1080/17458080.2010.538086

Salla, J.; Pandey, K. K.; Srinivas, K. 2012. Improvement of UV resistance of Wood surfaces by using ZnO nanoparticles. Polym Degrad Stab 97(4): 592-596. https://doi.org/10.1016/j.polymdegradstab.2012.01.013

Schaller, C.; Rogez, D. 2007. New approaches in Wood coating stabilization. J Coat Technol Res 4: 401-409. https://doi.org/10.1007/s11998-007-9049-5

Sun, Q.; Lu, Y.; Zhang, H.; Zhao, H.; Yu, H.; Xu, J.; Liu, Y. 2012. Hydrothermal fabrication of rutile TiO2 submicro spheres on Wood surface: Na efficient method to prepare UV-protective wood. Mater Chem Phys 133(1): 253-258. https://doi.org/10.1016/j.matchemphys.2012.01.018

Teaca, C.A.; Roşu, D.; Bodîrlău, R.; Roşu, L. 2013. Structural changes in Wood under artificial UV light irradiation determined by FTIR spectroscopy and color measurements–A brief review. BioResources 8(1): 1478-1507. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/2964

Teles, R.F.; da Costa, A.F. 2014. Influence of accelerated weathering on the colorimetric properties of angelim pedra wood. Nativa 2(2): 65-70.

Van Chu, T.; Van Chuong, P.; Tuong, V. M. 2014. Wett ability of Wood pressure-treated with TiO2 gel under hydrothermal conditions. BioResources 9(2): 2396-2404. https://doi.org/10.15376/biores.9.2.2396-2404

Wang, X.; Liu, S.; Chang, H.; Liu, J. 2014. Sol-gel deposition of TiO2 nano coatings on Wood surfaces with enhanced hydrophobicity and photostability. Wood Fiber Sci 46: 109-117. https://wfs.swst.org/index.php/wfs/article/view/1067

Wenzel, R.N. 1936. Resistance of solid surfaces to wetting by water. Ind Eng Chem 28(8): 988-994. https://doi.org/10.1021/ie50320a024

Xie, Q.; Jiang, Y.L.; Detavernier, C.; Deduytsche, D.; Van Meirhaeghe, R.L.; Ru, G.P.; Qu, X.P. 2007. Atomic layer deposition of TiO2 from tetrakis-dimethyl-amido titanium or Ti isopropoxide precursors and H2O. J Appl Phys 102(8): 083521. https://doi.org/10.1063/1.2798384

Zanatta, P.; Lazarotto, M.; Gonzalez de Cademartori, P.H.; Cava, S.D.S.; Moreira, M.L.; Gatto, D.A. 2017. The effect of titanium dioxide nanoparticles obtained by micro wave-assisted hydro thermal method on the color and decay resistance of pine wood. Maderas-Cienc Tecnol 19(4): 495-506. http://dx.doi.org/10.4067/S0718-221X2017005000901

Zanatta, P.; Missio, A.L.; Lazarotto, M.; da Silva Cava, S.; Jardim, P.L.G.; Gatto, D.A.; Moreira, M.L. 2018. Microwave-assisted solvo thermal: Na efficientand new methodto obtain hydrophobic Wood surfaces. Maderas-Cienc Tecnol 20(4). http://dx.doi.org/10.4067/S0718-221X2018005004801

Zhang, H.; Zhang, W.; Jin, C.; Li, S. 2016. Inorganic Antiflaming Wood Caused by a-Decorated ZnO Nanorod Arrays Coating Prepared by a Facile Hydrothermal Method. J Nanomater http://dx.doi.org/10.1155/2016/2358276

Zheng, R.; Tshabalala, M.A.; Li, Q.; Wang, H. 2015. Construction of hydrophobic Wood surfaces by room temperature deposition of rutile (TiO2) nanostructures. Appl Surf Sci 328: 453-458. https://doi.org/10.1016/j.apsusc.2014.12.083




How to Cite

Pereira Acosta, A. ., Zanatta, P. ., Gallio, E., Freire, N. ., Lazarotto, M. ., Gomes Jardim, P. L. ., Gatto, D. A. ., & Lucio Moreira, M. . (2021). Tio2-modified Pinus elliottii: A pine wood presenting increased resistance to water and ultraviolet radiation. Maderas-Cienc Tecnol, 23, 1–12. Retrieved from https://revistas.ubiobio.cl/index.php/MCT/article/view/4777




Most read articles by the same author(s)