Thermochemical behavior of eucalyptus grandis wood exposed to termite attack


  • Ezequiel Gallio
  • Henrique Römer Schulz
  • Laíse Guerreiro
  • Nidria Dias Cruz
  • Paula Zanatta
  • Mário Antônio Pinto da Silva Júnior
  • Darci Alberto Gatto


Chemical composition, Nasutitermes, thermal stability, wood deterioration, wood protection


This study aimed to evaluate the variations in thermal and chemical characteristics of juvenile Eucalyptus grandis wood submitted to a deterioration test by Nasutitermes termites. For this purpose, a biodeterioration test with termites was conducted according to ASTM D 3345 (2008), in which, after the end of the period corresponding to the test (40 days), we evaluated the mass loss, chemical composition and thermal stability of the main components of the deteriorated wood samples and those belonging to the control group. We found that deterioration due to exposure of the samples to Nasutitermes sp. termites caused a mass loss of 66.88% for wood with a density at 12% moisture content of 0.412 The quantitative chemical composition showed a reduction in the contents of cellulose, hemicellulose and lignin. Analysis of the variations of the organic functional groups related to the chemical composition of the wood by Fourier Transform Infrared Spectroscopy and relative intensity of the spectral bands also showed reductions, demonstrating homogeneous deterioration of the main components of the deteriorated woods. The thermal stability showed an increase in deteriorated wood for most of the temperature ranges, mainly for those that corresponded to losses in moisture and volatiles (25 °C - 100 °C), hemicelluloses (240 °C - 300 °C), celluloses, and together with initial lignin degradation (310 °C to 400 °C), possibly due to the removal of cellulose and hemicellulose, as well as the deposition of substances expelled by the termites in the cell wall. From the results, we conclude that the termites do not have specificity regarding the chemical component and that the deterioration caused variations in the chemical composition of the wood, whereas the opposite was observed for thermal stability, which presented an increase in most of the temperatures ranges for the deteriorated woods compared to the control group.


Download data is not yet available.


ALFREDSEN, G.; BADER, T. K.; DIBDIAKOVA, J.; FILBAKK, T.; BOLLMUS, S.; HOFSTETTER, K. 2012. Thermogravimetric analysis for wood decay characterization. European Journal of Wood and Wood Products 70(4): 527-53. DOI: 10.1007/s00107-011-0566-7

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM). 2008. Standard Test method for laboratory evaluation of wood and other cellulosic materials for resistance to termites. ASTM D 3345 – 74. West Conshohocke.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM). 2005. Standard test method of accelerated laboratory test of natural decay resistance of woods. ASTM D 2017. Annual book of ASTM standards. ASTM, West Conshohocken, PA.

AYDEMIR, D.; GUNDUZ, G.; ALTUNTAS, E.; ERTAS, M.; TURGUT, H.; ALMA, M. H. 2011. Investigation changes in the chemical contituents and dimensional stability of heat-treated hornbeam and uludag fir wood. BioResources 6(2): 1308-1321,

BOULOGNE, I.; CONSTANTINO, R.; AMUSANT, N.; FALKOWSKI, M.; RODRIGUES, A. M. S.; HOUËL E. 2017. Ecology of termites from the genus Nasutitermes (Termitidae: Nasutitermitinae) and potential for science-based development of sustainable pest management programs. Journal of Pest Science 90: 19-37. DOI:

BRAZILIAN TREE INDUSTRY (BTI). 2017. Annual Report: base year 2016. 80 f. 2017.

BRISCHKE, C.; MEYER, L.; OLBERDING, S. 2014. Durability of wood exposed in ground e comparative field trials with different soil substrates. International Biodeterioration & Biodegradation 86: 108-114. DOI:

CHEN, Y.; FAN, Y.; GAO, J.; STARK, N. M. 2012. The effect of heat treatment on the chemical and color change of black locust (Robinia pseudoacacia) wood flour. BioResources 7(1):1157-1170.

CONSTANTINO, R. 2002. The pest termites of South America: taxonomy, distribution and status. Journal of Applied Entomology 126: 355-365. DOI:

COUTURIER, M.; NAVARRO, D.; CHEVRET, D.; HENRISSAT, B.; PIUMI, F.; RUIZ-DUEÑAS, F. J.; MARTINEZ, A. T.; GRIGORIEV, I. V.; RILEY, R.; LIPZEN, A.; BERRIN, J.; MASTER, E. R.; ROSSO, M. 2015. Enhanced degradation of softwood versus hardwood by the white-rot fungus Pycnoporus coccineus. Biotechnology for Biofuels 8:16. DOI: 10.1186/s13068-015-0407-8

CRESPO, Y. A.; NARANJO, R. A.; BURGOS, J. C. V.; SANCHEZ, C. G.; SANCHEZ, E. M. S. 2015. Thermogravimetric analysis of thermal and kinetic behavior of Acacia mangium wood. Wood and Fiber Science. 47(4): 327-335.

DARWISH, S. S.; EL HADIDI, N. M. N.; MANSOUR, M. 2013.The effect of fungal decay on Ficus sycomorus wood. International Journal of Conservation Science 4(3): 271-282,

DELUCIS, R. A.; CADEMARTORI, P. H. G.; MISSIO, A. L.; GATTO, D. A. 2016. Decay resistance of four fast-growing eucalypts wood exposed to three types of fields. Maderas. Ciencia y Tecnología 18(1): 33-42. DOI:

FACKLER, K.; SCHWANNINGER, M.; GRADINGER, C.; HINTERSTOISSER, B.; MESSNER, K. 2007. Qualitative and quantitative changes of beech wood degraded by wood-rotting basidiomycetes monitored by Fourier transform infrared spectroscopic methods and multivariate data analysis. FEMS Microbiol Lett 271: 162-169. DOI:

GAŠPAROVIČ, L.; LABOVSKÝ, J.; MARKOŠ, J.; JELEMENSKÝ, L. 2012. Calculation of kinetic parameters of the thermal decomposition of wood by distributed activation energy model (DAEM). Chemical and Biochemical Engineering Quarterly 26(1): 45-53.

HAUPT, M.; LEITHOFF, H.; MEIER, D.; PULS, J.; RICHTER, H. G.; FAIX, O. 2003. Heartwood extractives and natural durability of plantation-grown teakwood (Tectona grandis L.) - A case study. Holz als Roh- und Werkstoff 61(6): 473-474. DOI:

HUBBARD, R. M.; STAPE, J.; RYAN, M. G.; ALMEIDA, A. C.; ROJAS, J. 2010. Effects of irrigation on water use and water use efficiency in two fast growing Eucalyptus plantations. Forest Ecology and Management 259(9): 1714-1721. DOI:

MALAKANI, M.; KHADEMIESLAM, H.; HOSSEINIHASHEMI, S. K.; ZEINALY, F. 2014. Influence of fungal decay on chemi-mechanical properties of beech wood (Fagus orientalis). Cellulose Chemistry and Technology 48(1-2): 97-103.

MISSIO, A. L.; MATTOS, B. D.; CADEMARTORI, P H. G.; PERTUZZATTI, A.; CONTE, B.; GATTO, D. A. 2015. Thermochemical and physical properties of two fast-growing eucalypt woods subjected to two-step freeze–heat treatments. Thermochimica Acta, 615: 15-22. DOI:

PANDEY, K. K.; PITMAN, A. J. 2003. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. International Biodeterioration & Biodegradation 52: 151-160. DOI: 10.1016/S0964-8305(03)00052-0

POZO, C.; DÍAZ-VISURRAGA, J.; CONTRERAS, D.; FREER, J.; RODRÍGUEZ, J. 2006. Characterization of temporal biodegradation of radiata pine by Gloeophyllum trabeum through principal component analysis-based two-dimensional correlation FTIR spectroscopy. Journal of the Chilean Chemical Society. 61(2): 2878-2883.

ROWELL, R. 1983. The Chemistry of Solid Wood. In: 185th meeting of the American Chemical Society, 185, Anais. Seattle, Washington,

SEBIO-PUÑAL, T.; NAYA, S.; LÓPEZ-BECEIRO, J.; TARRÍO-SAAVEDRA, J.; ARTIAGA, R. 2012. Thermogravimetric analysis of wood, holocellulose, and lignin from five wood species. Journal of Thermal Analysis and Calorimetry 109(3): 1163-1167. DOI:

STALLBAUN, P. H.; BARAUNA, E. E. P.; PAES, J. P.; RIBEIRO, J. B.; RIBEIRO, N. C.; MONTEIRO, T. C.; ARANTES, M. D. C. 2017. Natural resistance of Sclerolobium paniculatum Vogel wood to termites in laboratory conditions. Floresta e Ambiente, Seropédica – RJ, v. 24, e-20160013,

STEEL, R. G. D.; TORRIE, J. H. 1980. Principles and procedures of statistic: a biometrical approach. 2. ed. New York: McGrawHill, 633 p.
TAPPI Standards. 2007.TAPPI Test Methods, Atlanta.

TOMAK, E. D.; TOPALOGU, E.; GUMUSKAYA, E.; YILDIZ, U. C.; AY, N. 2013. An FT-IR study of the changes in chemical composition of bamboo degraded by brown-rot fungi. International Biodeterioration & Biodegradation 85: 131-138. DOI:

WATANABE, H.; TOKUDA, G. 2010. Cellulolytic systems in insects. Annual Review of Entomology 55: 609-632. DOI:

YILGOR, N.; DOGU, D.; MOORE, R.; TERZI, E.; KARTAL, S. N. 2013. Evaluation of fungal deterioration in Liquidambar orientalis Mill. heartwood by FT-IR and light microscopy. BioResources 8(2): 2805-2826.

ZHANG, X.; WANG, F.; KEER, L. M. 2015. Influence of surface modification on the microstructure and thermo-mechanical properties of bamboo fibers. Materials 8: 6597-6608. DOI:




How to Cite

Gallio, E., Römer Schulz, H., Guerreiro, L., Dias Cruz, N., Zanatta, P., Pinto da Silva Júnior, M. A., & Alberto Gatto, D. (2020). Thermochemical behavior of eucalyptus grandis wood exposed to termite attack. Maderas-Cienc Tecnol, 22(2), 157–166. Retrieved from




Most read articles by the same author(s)