Wettability and decay of particleboards manufactured with thermally treated sugarcane residue and bamboo (Dendrocalamus asper) particles
DOI:
https://doi.org/10.4067/s0718-221x2022000100430Keywords:
Chemical composition, contact angle, medium density particleboards, thermal modification, wood decay fungiAbstract
This study aimed to evaluate the chemical composition of wood particles (control and treated), and the effects of thermal modification and adhesive levels on the wettability and biological resistance of particleboards made of sugarcane residue and bamboo (Dendrocalamus asper). Therefore, 75% bamboo particles and 25% sugarcane residue (bagasse) were used for producing the particleboards. The particles were treated at 220 °C for 3h35min. Urea formaldehyde (UF) adhesive was used in three solid contents (10%, 12% and 14%) based on the dry mass of the particles. The mat was cold pre-consolidated (pressure of 0,5 MPa for 5 min) and after hot consolidated (3,45 MPa, 180 ºC, 10 min). Water and ethylene glycol and two measurement times were used to measure the contact angle. Gloeophyllum trabeum and Rhodonia placenta (brown rot) and Trametes versicolor (white rot) fungi were used for the biological resistance test. There was a change in the chemical composition of the treated particles such as a reduction in the levels of lignin (bagasse and bamboo), total extracts and holocellulose (bagasse). The thermal treatment increased the final contact angles obtained with water. The particleboard surfaces were classified as non-wettable and partially wettable to the tested solvents. The thermal treatment provided biological resistance improvements in the particleboards to the tested fungi, being classified as very resistant to Rhodonia placenta, resistant to very resistant to Gloeophyllum trabeum, and moderate to resistant to Trametes versicolor.
Downloads
References
American Wood Protection Association. 2016. AWPA E-30: Standard method for evaluating natural decay resistance of woods using laboratory decay tests. AWPA. Birmingham. Alabama. EUA.
American National Standards. 1999. ANSI. A208-1: Particleboard. ANSI. Gaithersburg, Maryland. EUA.
Associação Brasileira de Normas Técnicas. 2013. NBR 14.810-2: Medium density particle panels – Part 1: Terminology,
and part 2: Requirements and methods of testing. ABNT. Rio de Janeiro, Rio de Janeiro, Brazil.
Atoyebi, O.D.; Osueke, C.O.; Badiru, S.; Gana, A.J.; Ikpotokin, I.; Modupe, A.E.; Tegene, G.A. 2019. Evaluation of particleboard from sugarcane bagasse and corn cob. Int J Mech Eng Technol 10(1): 1193-1200. https://www.iaeme.com/ijmet/issues.asp?JType=IJMET&VType=10&IType=01
Almeida, A.C.; Araújo, V.A.; Morales, E.A.M.; Gava, M.; Muni,. R.A.; Garcia, J. N.; Barbosa, J.C. 2017. Wood-bamboo particleboard: mechanical properties. BioResources 12 7784-7792. http://dx.doi.org/10.15376/biores.12.4.7784.-7792
Bachle, H.; Zimmer, B.; Windeisen, E.; Wegener, G. 2010. Evaluation of thermally modified beech and spruce wood and their properties by FT-NIR spectroscopy. Wood Sci Technol 44 http://dx.doi.org/10.1007/s00226-010- 0361-3
Bazzetto, J.T.L.; Bortoletto Junior, G.; Brito, F.M.S. 2019. Effect of particle size on bamboo particle board properties. Floresta e Ambient 26(2). http://dx.doi.org/10.1590/2179-8087.012517
Belini, U.L.; Leite, M.K.; Tomazello Filho, M.; Chaix, G.; Baudasse, C.; Lemenager, N.; Thevenon, M.F. 2014. Bioensaios em painéis confeccionados com eucalipto e bagaço de cana-de-açúcar. Rev Árvore 38(2): 361-368. http://dx.doi.org/10.1590/S0100-67622014000200017 (In portuguese).
Barrero, N.M.G.; Fiorelli, J.; Rossignolo, J.A.; Savastano Junior, H. 2016. Avaliação de metodologias de envelhecimento em painéis de partículas de bagaço de cana-de-açúcar para aplicação em sistemas construtivos. In: Avaliação de desempenho de tecnologias construtivas inovadoras: materiais e sustentabilidade. Kazmierczak, C.S.; Fabricio, M. M (Eds.). Scienza. São Carlos. Brazil. pp. 177-222. http://dx.doi.org/10.5935/978-85-5953-005-6.2016C007 (In portuguese).
Brito, J.O.; Garcia, J.N.; Bortoletto Júnior, G.; Pessoa, A.M.C.; Silva, P.H. M. 2006. Densidade básica e retrabilidade da madeira de Eucalyptus grandis, submetida a diferentes temperaturas de termorretificação. Cerne 12 (2): 182-188. http://www.bibliotecaflorestal.ufv.br:80/handle/123456789/18101 (In portuguese).
Brito, F.M.S.; Paes, J.B.; Oliveira, J.T.S.; Arantes, M.D.C.; Vidaurre, G.B.; Brocco, V.F. 2018. Physico-mechanical characterization of heat-treated glued laminated bamboo. Constr Build Mater 190 719-727. http://dx.doi.org/10.1016/j.conbuildmat.2018.09.057
Brito, F.M.S. 2018. Produção e avaliação da qualidade de painéis aglomerados constituídos por partículas de bagaço de cana-de-açúcar e bambu. Escola Superior de Agricultura Luiz de Queiroz. Piracicaba. Brazil. https://teses.usp.br/teses/disponiveis/11/11150/tde-03052018-132019/pt-br.php (In portuguese).
Brito, F.M.S.; Bortoletto Júnior, G. 2019. Thermal modification of sugarcane waste and bamboo particles for the manufacture of particleboards. Rev Árvore 43(1): e430112. https://doi.org/10.1590/1806-90882019000100012
Brito, F.M.S.; Paes, J.B.; Oliveira, J.T.S.; Arantes, M.D.C.; Dudecki, L. 2020a. Chemical characterization and biological resistance of thermally treated bamboo. Constr Build Mater 262 e120033.https://doi.org/10.1016/j.conbuildmat.2020.120033
Brito, F.M.S.; Bortoletto Júnior, G.; Paes, J.B.; Belini, U. L.; Tomazello Filho, M. 2020b. Technological characterization of particleboards made with sugarcane bagasse and bamboo culm particles. Constr Build Mater 262 e120501. https://doi.org/10.1016/j. conbuildmat.2020.120501
Brito, F.M.S.; Bortoletto Júnior, G. 2020. Properties of particleboards manufactured from bamboo (Dendrocalamus asper). Revista Brasileira de Ciências Agrárias 15 1-10. https://doi.org/10.5039/agraria.v15i1a7245
Brito, F.M.S.; Bortoletto, G.; Paes, J.B. 2021. Effect of leaching and particles size in some properties of particleboards produced with Dendrocalamus asper (Schult. & Schult. f.) Backer ex K. Heyne. Sci For 49(131): e3356. https://doi.org/10.18671/scifor.v49n131.15
Candan, Z.; Buyuksari, U.; Korkut, S.; Unsal, O.; Çakicier, N. 2012. Wettability and surface roughness of thermally modified plywood panels. Ind Crops Prod 36(1): 434-436. https://doi.org/10.1016/j.indcrop.2011.10.010
Carvalho, D.J.; Moretti, R. R.; Colodette, J. L.; Bizzo, W. A. 2020. Assessment of the self-sustained energy generation of an integrated first and second generation ethanol production from sugarcane through the characterization of the hydrolysis process residues. Energy Convers Manag 203: e0112267. https://doi.org/10.1016/j.enconman.2019.112267
César, A.S.S. 2011. Estudo da interação adesivo-partícula em painéis OSB (Oriented Strand Board). Universidade Federal de Lavras. Lavras. Brazil. http://www.bibliotecaflorestal.ufv.br/bitstream/handle/123456789/4405/Dissertacao_Antonia%20Amanda%20da%20Silva%20Cesar%20-%20.pdf?sequence=1&isAllowed=y (In portuguese).
Chen, Y.; Gao, J.; Fan, Y.; Tshabalala, M.A.; Stark, N. M. 2012. Heat-induced chemical and color changes of extractives – free black locust (Robinia pseudocacia) wood. BioResources 7(2): 2236-2248. https://doi.org/10.15376/biores.7.2.2236-2248
Companhia Nacional de Abastecimento (CONAB) 2020. Fourth survey 2018/2019. Monitoring of the Brazilian harvest. Sugar cane. 5 (4). Brasília. p. 1-75. ISSN: 2318-7921. (In portuguese).
Del Menezzi, C.H.S.; Souza, R.Q.; Thompson, R. M.; Okino, E. Y. A.; Costa, A. F. 2008. Properties after weathering and decay resistance of a thermally modified wood structural board. Int Biodeter Biodegr 62(4): 448-454. https://doi.org/10.1016/j.ibiod.2007.11.010
Dinhane, F.C.R.; Araújo, I. I.; Valarelli, I.D.; Bueno, M.A.P.; Ferreira, B.S.; Campos, C.I. 2015. Particleboard manufactured with bamboo and coconut fibers in different ratios of adhesive. Adv Mater Res 1088 672-675. https://doi.org/10.4028/www.scientific.net/AMR.1088.672
Dubey, M.K.; Pang, S.; Walker, J. 2011. Changes in chemistry. color. dimensional stability and fungal resistance of Pinus radiata D. Don wood with oil heat treatment. Holzforschung 66 (1): 49-57. https://doi.org/10.1515/HF.2011.117
Esteves, B.M.; Pereira, H.M. 2009. Wood modification by heat treatment: a review. BioResources 4 (1):370-404. https://www.researchgate.net/publication/279900105_Wood_modification_by_heat_treatment_A_review
Ferreira, L.M.C. 2014. Design de móveis e bambu laminado colado: consideração ao tratamento térmico e às características físicas e mecânicas com vistas ao projeto de produtos. Universidade de Brasília. Brasília. Brazil. https://repositorio.unb.br/handle/10482/17237 (In Portuguese).
Finnish Thermowood Association. 2003. Thermo Wood Handbook. Helsinki. Finland.
Fiorelli, F.; Galo, R.G.; Castro Júnior, S.L.; Belini, U.L.; Lasso, P.R.O.; Savastano Júnior, H. 2018. Multilayer particleboard produced with agroindustrial waste and amazonia vegetable fibres. Waste Biomass Valor 9: 1151–1161. https://doi.org/10.1007/s12649-017-9889-x
Fiorelli, J.; Bueno, S.B.; Cabral, M.R. 2019. Assessment of multilayer particleboards produced with green coconut and sugarcane bagasse fibers. Constr Build Mater 205: 1-9.https://doi.org/10.1016/j.conbuildmat.2019.02.024
Fang, Q.; Cui, H.W.; Du, G.B. 2016. Surface wettability, surface free energy, and surface adhension of microwave plasma-treated Pinus yunnaensis wood. Wood Sci Technol 50 285-296. https://doi.org/10.1007/s00226-015-0793-x
Furtini, A.C.C.; Santos, C.A.; Faria, D.L.; Vecchia, A.P.L.; Fernandes, I.C.; Mendes, L.M.; Guimarães Júnior, J.B. 2019. Valorization of bamboo wastes for the production of particleboards. In: Wastes: solutions. Treatments and opportunities III. Vilarinho, C.; Castro, F.; Gonçalves, M.; Fernando, A. L. (Eds.). Taylor & Francis Group. London. pp. 198-203. https://www.taylorfrancis.com/books/e/9780429289798/chapters/10.1201/9780429289798-32
Gauss, C.; Araújo, V.; Gava, M.; Cortez-Barbosa, J.; Savastano Júnior, H. 2019. Bamboo particleboards: recent developments. Pesq Agropec Trop 49. http://dx.doi.org/10.1590/1983-40632019v4955081
Hakkou, M.; Pétrissans, M.; Zoulalian, A.; Gérardini, P. 2005. Investigation of wood wettability changes during heat treatment on the basis of chemical analysis. Polym Degrad Stabil 89(1): 1-5. https://doi.org/10.1016/j.polymdegradstab.2004.10.017
Hiloidhari, M.; Araújo, K.; Kumari, S.; Baruah, D. C.; Ramachandra, T. V.; Kataki, R.; Thaku, I. S. 2018. Bioelectricity from sugarcane bagasse co-generation in India: an assessment of resource potential, policies and market mobilization opportunities for the case of Uttar Pradesh. J Clean Prod 182: 1012–1023. 2018. https://doi.org/10.1016/j.jclepro.2018.02.087
Inari, G.N.; Petrissans, M.; Lambert, J.; Ehrhardt, J.J.; Gérardin, P. 2006. XPS characterization of wood chemical composition after heat-treatment. Surf Interface Anal 38 1336-1342. https://doi.org/10.1002/sia.2455
Iwakiri, S.; Zeller, F.; Pinto, J.A.; Ramirez, M.G.L.; Souza, M.M.; Seixas, R. 2010. Avaliação do potencial de utilização da madeira de Schizolobium amazonicum “Paricá” e Cecropia hololeuca “Embaúba” para produção de painéis aglomerados. Acta Amaz 40(2): 303 -308. https://doi.org/10.1590/S0044-59672010000200008 (In portuguese).
Jirouˇs-Rajkovi´c, V.; Mikleˇci´c, J. 2019. Heat-treated wood as a substrate for coatings. weathering of heat-treated wood, and coating performance on heat-treated wood. Adv Mater Sci Eng. https://doi.org/10.1155/2019/8621486
Kubovský, I.; Kaˇcíková, D.; Kaˇcík, F. 2020. Structural changes of oak wood main componentes caused by thermal modification. Polym J 12, 485. https://dx.doi.org/10.3390/polym12020485
Kollmann, F.F.P.; Kuenzi, E.W.; Stamm, A.J. 1975. Principles of wood Science and Tecnology: II Wood based materials. Springer-Verlag.
Lee, C. H.; Yang, T. H.; Cheng, Y.W.; Lee, C. J. 2018. Effects of thermal modification on the surface and chemical properties of moso bamboo. Constr Build Mater 178 59-71. https://doi.org/10.1016/j.conbuildmat.2018.05.099
Li, L.; Wang, X.; Wu, F. 2016. Chemical analysis of densification drying. and heat treatment of Scopts pine (Pinus sylvestris L.) through a hot-pressing process. BioResources 11(2): 3856-3874. https://doi.org/10.1537/biores.11.2.3856-3874
Maloney, T.M. 1993. Modern particleboard & dry process fiberboard manufacturing. Backbeat Books.
Mendes, R.F.; Bortoletto Júnior, G.; Garlet, A.; Almeida, N.F.; Surdi, P.G. 2013. Resistência ao ataque de fungos apodrecedores em painéis OSB termicamente tratados. Cerne 19(4): 551-557. https://doi.org/10.1590/S0104-77602013000400004 (In portuguese)
Mendes, R.F.; Bortoletto Júnior, G.; Almeida, N.F.; Surdi, P.G.; Barbeiro, I.N. 2013. Effects of thermal pre-treatment and variables of production on properties of osb panels of Pinus taeda. Maderas-Cienc Tecnol 15(2): 141-152. https://doi.org/10.4067/S0718-221X2013005000012
Myers, D. 1999. Surface, interfaces, and colloids: principles and applications. Wiley-VCH. Weinheim. Alemanha. ISBN10: 0471330604 (ISBN13: 9780471330608).
Melo, R.R.; Stangerlin, D.M.; Santana, R.R.C.; Pedrosa, T. D. 2015. Decay and termite resistance of particleboard manufactured from wood. bamboo and rice Husk. Maderas-Cienc Tecnol 17(1): 55 - 62. http://dx.doi.org/10.4067/S0718-221X2015005000006
Moslemi, A.A. 1974. Particleboard. Southern Illinois University Press.
Nakanishi, E.Y.; Cabral, M.R.; Fiorelli, J.; Santos, V.; Christoforo, A.L.; Savastano Junior, S. 2018. Study of the production process of 3-layer sugarcane-bamboo-based Particleboards. Constr Build Mater 183: 618-625. https://doi.org/10.1016/j.conbuildmat.2018.06.202
Nasser, S.M.; Morales, E.A.M.; Pereira, L.E.R.; Eugenio, R.A.; Biazzon, J.C.; Lima Júnior, M. P.; Bueno, M.A.P.; Archangelo, A.; Celestino, V.R.B.; Nasser, H.N.; Dias, L.G.; Munhoz, M. R.; Gonçalves, G.J.C.; Breganon, R.; Valarelli, I.D. 2020. Mechanical analysis of bamboo and agro-industrial residue one-layer particleboard. BioResources 15(2): 2163 - 2170. https://doi.org/10.15376/biores.15.2.2163-2170
Nurhazwani, O.; Jawaid, M.; Paridah, M.T.; Juliana, A.H.; Hamid, S.A. 2016. Hybrid particleboard made from bamboo (Dendrocalamus asper) veneer waste and rubberwood (Hevea brasilienses). BioResources 11(1): 306-323. https://doi.org/10.15376/biores.11.1.306-323
Okino, E.Y.A.; Alves, M.V.S.; Teixeira, D.E.; Souza, M.R.; Santana, M.A.E. 2007. Biodegradação de chapas de partículas orientadas de pinus, eucalipto e cipreste expostas a quatro fungos apodrecedores. Sci For (74): 67-74. (In portuguese).
Paes, J.B.; Segundinho, P.G.A.; Euflosino, A.E.R.; Silva, M.R.; Calil Júnior, C.; Oliveira, J.G.L. 2015. Resistance of thermally treated woods to Nasutitermes corniger in a food preference test. Madera Bosques 21(1): 157-164.
Protásio, T.P.; Mendes, R.F.; Scatolino, M.V.; Mendes, L.M.; Trugilho, P.F.; Melo, I.C.N.A. 2015. Estabilidade térmica de painéis aglomerados de bagaço de cana-de-açúcar e madeira de Pinus spp. Sci For 43(107): 683-691. https://www.ipef.br/publicacoes/scientia/nr107/cap20.pdf (In portuguese).
Ribeiro, D.P.; Vilela, A.P.; Silva, D.W.; Napoli, A.; Mendes, R.F. 2020. Effect of heat treatment on the properties of sugarcane bagasse medium density particleboard (MDP) panels. Waste Biomass Valorization 11:6429-6441. https://doi.org/10.1007/s12649-019-00882-9
Rolleri, A.; Roffael, E. 2008. Influence of climatic conditions and surface roughness on the wettability of medium density fiberboards (MDF). Holz Roh Werkst 66. 465-466. https://doi.org/10.1007/s00107-008-0274-0
Schmidt, O.; Wei, D.S.; Liese, W.; Wollenberg, E. 2011. Fungal degradation of bamboo samples. Holzforschung 65 883-888. https://doi.org/10.1515/HF.2011.084
Song, X.; Guomo, Z.; Hong, J.; Shuquan, Y.; Jinhe, F.; Weizhong, L.; Weifeng, W.; Zhihai, M.; Changhui, P. 2011. Carbon sequestration by Chinese bamboo forests and their ecological benefits: assessment of potential, problems, and future challenges. Environ Rev 19: 418-422. https://doi.org/10.1139/a11-015
Souza, J.T.; Haselein, C.R.; Menezes, W.M.; Garlet, A.; Talgatti, M. 2018. Propriedades biológicas de painéis de casca de arroz e adesivo tanino-formaldeído. Nativa 6(5): 532-536. http://dx.doi.org/10.31413/nativa.v6i5.5566 (In portuguese).
Soares, S.S.; Guimarães Júnior, J.B.; Mendes, L.M.; Mendes, R.F.; Protásio, T.P.; Lisboa, F.J. N. 2017. Valorização do bagaço de cana-de-açúcar na produção de painéis aglomerados de baixa densidade. Ci Madeira 8(2): 64-73. http://dx.doi.org/10.12953/2177-6830/rcm.v8n2p64-73 (In portuguese).
Salim, R.; Wahab, R.; Ashaari, Z. 2008. Effect of oil heat treatment on chemical constituents of semantan bamboo (Gigantochloa scortechinii Gamble). J Sustain Dev 1(2). http://dx.doi.org/10.5539/jsd.v1n2p91
Sugahara, E.S.; Silva, S.A. M.; Buzo, A.L.S.C.; Campos, C.I.; Morales, E.A.M.; Ferreira, B. S.; Azambuja, M.A.; Lahr, F.A.R.; Christoforo, A.L. 2019. High-density particleboard made from agro-industrial waste and different adhesives. BioResources 14(3): 5162-5170. http://dx.doi.org/10.15376/biores.14.3.5162-5170
Surini, T.; Charrier, F.; Malvestio, J.; Charrier, B.; Moubarik, A.; Castéra, P.; Grelier, S. 2012. Physical properties and termite durability of maritime pine (Pinus pinaster Ait.) heat-treated under vacuum pressure. Wood Sci Technol 46(1): 487-501. http://dx.doi.org/10.1007/s00226-011-0421-3
Technical Association of the Pulp and Paper Industry. 1997. TAPPI204-97: Solvent extractives of wood and pulp. TAAPI. Atlanta. Georgia. EUA. https://www.tappi.org/content/sarg/t204.pdf
Technical Association of the Pulp and Paper Industry. 1999. TAPPI207-99: Water solubility of wood and pulp. TAPPI. Atlanta. Georgia. EUA.
Technical Association of the Pulp and Paper Industry. 2002. TAPPI222-02: Acid insoluble lignin in wood and pulp. TAPPI. Atlanta. Georgia. EUA. https://www.tappi.org/content/SARG/T222.pdf
Technical Association of the Pulp and Paper Industry. 2002. TAPPI211-02: Ash in wood, pulp, paper and paperboard: combustion at 525°C. TAPPI. Atlanta. Georgia. EUA. https://research.cnr.ncsu.edu/wpsanalytical/documents/T211.PDF
Unsal, O.; Candan, Z.; Buyuksari, U.; Korkut, S.; Babiak, M. 2010. Effects of thermal modification on surface characteristics of OSB panels. Wood Res 55(4): 51-58. https://www.woodresearch.sk/wr/201004/05.pdf
Unsal, O.; Candan, Z.; Korkut, S. 2011. Wettability and roughness characteristics of modified wood boards using a hot-press. Ind Crop Prod 34(3): 1455-1457. https://doi.org/10.1016/j.indcrop.2011.04.024
Výbohová, E.; Kučerová, V.; Andor, T.; Balážová, Z.; Veľková, V. 2018. The effect of heat treatment on the chemical composition of ash wood. BioResources 13(4): 8394-8408. https://doi.org/10.15376/biores.13.4.8394-8408l
Walinder, M.E.P.; Johansson, I. 2001. Measurement of wood wettability by the Wilhelmy method. Holzforschung 55(1): 21-32. https://doi.org/10.1515/HF.2001.005
Weiland, J.J.; Guyonnet, R. 2003. Study of chemical modifications and fungi degradation of thermally modified wood using DRIFT-spectroscopy. Holz Roh Werkst 61 216-220. https://doi.org/10.1007/s00107-003-0364-y
Wu, W.; Liu, Q.; Zhu, Z.; Shen, Y. 2015. Managing bamboo for carbon sequestration, bamboo stem and bamboo shoots. Small-scale For 14(2): 233–243. https://doi.org/10.1007/s11842-014-9284-4
Yano, B.B.R.; Silva, S. A.M.; Almeida, D.H.; Aquino, V. B. M.; Christoforo, A.L.; Rodrigues, E.F.C.; Carvalho Júnior, A.N.; Silva, A.P.; Lahr, F.A.R. 2020. Use of sugarcane bagasse and industrial timber residue in particleboard production. BioResources 15(3): 4753-4762. https://doi.org/10.15376/biores.15.3.4753-4762
Zaia, U.G.; Cortez-Barbosa, J.; Morales, E.A.M.; Lahr, F.A.R.; Nascimento, M.F.; Araújo, V. A. 2015. Production of particleboards with bamboo (Dendrocalamus giganteus) Reinforcement. BioResources 10(1): 1424-1433. https://repositorio.unesp.br/handle/11449/129141
Zhang, Y.M.; Yu, Y.L.; Yu, W.J. 2013. Effect of thermal treatment on the physical and mechanical properties of Phyllostachys pubescen bamboo. Eur J Wood Prod 71: 61–67. https://doi.org/10.1007/s00107-012-0643-6.
Zhang, Y.; Yu, W. 2015. Changes in surface properties of heat-treated Phyllostachys pubescens bamboo. BioResources 10(4): 6809-6818. https://doi.org/10.15376/biores.10.4.6809-6818
Zhang, Y.; Zhu, R.; Yu, W. 2017. Effect of steam treatment on the properties of Phyllostachys iridescens bamboo composite. Cell Chem Technol 51(1-2): 103-108. https://repositorio.unesp.br/bitstream/handle/11449/129141/WOS000351941000114.pdf?sequence=1&isAllowed=y
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de Reconocimiento de Creative Commons CC-BY que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.